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Abstract

The difficulties in experimental realization of perfect Gaussian states makes the

use of non-Gaussian states more practical. Non-Gaussian states have a lot of

importance in quantum foundations and also in quantum information processing

tasks. This thesis points towards the fact that non-Gaussian states can be more

non-local than Gaussian states. In the second chapter, we have shown the violation

of the gravitational weak equivalence principle through the mass dependence of the

experimentally measurable quantities and the violation increases with the degree

of non-Gaussianity. In the third chapter, we have studied the non-locality of non-

Gaussian states in classical optics due to the existence of higher order correlation

terms. In the next chapter, we have shown that to detect nonlocal correlations

of non-Gaussian states, say, steerability, one needs to choose appropriate steering

criteria that are sensitive to higher order terms of non-Gaussian states. In the

fifth chapter, we have introduced fine-grained uncertainty relation for continuous-

variable systems. With the help of our derived uncertainty relation, we have

formulated stronger steering criterion for continuous-variable systems. Finally, in

the concluding chapter, we have briefly summarized the important results of our

works.
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Chapter 1

General introduction

In physical systems, correlations describe the covariations of one variable with an-

other on average across space and time, and can be categorized in two different

forms : classical correlation and quantum correlation. Classical correlation can

be explained by the laws of classical physics. The other part, which can not be

explained by the laws of classical physics is quantum correlation. Quantum corre-

lations may be inherently probabilistic and nonlocal, whereas classical correlations

can be described by local deterministic theories. One possible way to detect the

existence of quantum correlations is through the violation of the gravitational weak

equivalence principle for quantum systems.

Although quantum theory works mainly for atomic or subatomic particles, i.e., in

microscopic scale, it may be extended to the macroscopic scale under suitable cir-

cumstances. The weak equivalence principle which is a famous property of classical

systems is shown to be violated in the quantum domain. In some cases, classical

properties of a particle will emerge in the macroscopic limit of quantum mechanics.

As for example, the compatibility between the weak equivalence principle and the

quantum mechanics is recovered in the macroscopic limit of the latter [Ali et al.,

2006; Chowdhury et al., 2012].

From the practical point of view, in information theory quantum correlations have

been used as resource in performing tasks that are unable to be achieved using

classical means, leading to many interesting and important information-theoretic

applications, such as dense coding, the violation of local uncertainty relation by

nonlocal correlations, the sending of unknown quantum states at a distant loca-

tion using finite resources in quantum teleportation, the generation of secret key

1



Chapter 1. General introduction 2

in quantum cryptography, better playoff of nonlocal games, i.e., Bell-CHSH game,

etc. The different forms of uncertainty relations are one aspect of the conceptual

difference between classical and quantum physics. However, the understanding

of the exact difference between these two worlds is vital in learning how to per-

form different information processing tasks. Developments in quantum informa-

tion theory for both discrete [Horodecki et al., 2009] as well as continuous variables

[Weedbrook et al., 2012] have brought about the realization of subtle differences

in various categories of correlations.

Among all the properties, nonlocality plays a key role in quantum theory. These

non-classical, more specifically, nonlocal correlations can be categorised by three

different forms, i.e., entanglement, steering and Bell-noncal correlations. For bi-

partite systems, steering is a kind of correlation, in the formulation of which at

least one of the systems is being trusted as quantum system. In case of entangle-

ment, both of the systems are being trusted as quantum, whereas in Bell nonlocal

correlations, none of them needs to be trusted as quantum system. This leads

to a hierarchy, in which entanglement is the weakest and Bell nonlocality is the

strongest of the three form of correlations, and steering takes the intermediate

position [Cavalcanti et al., 2009; Jones, Wiseman, and Doherty, 2007; Wiseman,

Jones, and Doherty, 2007]. Bell nonlocal states constitute a strict subset of steer-

able states which, in turn, are a strict subset of entangled states. For the case of

pure entangled states of two qubits, the three classes overlap.

1.1 Gravitational Weak Equivalence Principle

Starting from Newton’s version of the equivalence principle which includes the

universality of free fall (UFF), the development of the statement of the weak

equivalence principle is an important foundation of the general theory of relativity.

Any violation of the weak equivalence principle for quantum systems would require

the development of new theoretical physics, especially the attempts to connect

gravity with quantum mechanics.
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1.1.1 The Principle of Equivalence

The traditional equivalence principle is fundamentally both classical and local, and

it is interesting to enquire how it is to be understood in quantum mechanics. In

the famous gedanken experiment conceived by Galileo, the universality of the ratio

between the gravitational and inertial masses had been studied with test bodies in

free fall from the leaning tower of Pisa [Galilei, 1638]. The principle of equivalence

states about this equivalence between the inertial mass and the gravitational mass

: mi ≡ mg ≡ m. With respect to the mechanical motion of particles, Einstein

concluded that a state of rest in a sufficiently weak, homogeneous gravitational field

is physically indistinguishable from a state of uniform acceleration in a gravity-free

space. Einstein elevated this concept to become the Principle of Equivalence which

is the foundation of the General Theory of Relativity. Quantum mechanically, this

statement becomes [Bonse and Wroblewski, 1983], ‘ The laws of physics are the

same in a frame with gravitational potential V = −mgz as in a corresponding

frame lacking this potential but having a uniform acceleration g instead’.

Several tests have been performed to show the validity of the equivalence principle

with classical test bodies such as very sensitive pendula or torsion balances. Even

for quantum mechanical particles, the validity of the principle is also proved using

gravity-induced interference experiments [Colella, Overhauser, and Werner, 1975;

Peters, Chung, and Chu, 1999].

1.1.2 The Weak Equivalence Principle of quantum

mechanics

The other alternative form of equivalence principle states that when all sufficiently

small test bodies fall freely, they acquire an equal acceleration independent of their

mass or constituent in a gravitational field. To obtain quantum analogue of this

statement, it might be replaced by some principle such as [Holland, 1993], ‘ The

results of experiments in an external potential comprising just a sufficiently weak,

homogeneous gravitational field, as determined by the wave function, are inde-

pendent of the mass of the system’. This statement is known as weak equivalence

principle of quantum mechanics (WEQ).
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The most familiar tests of the weak equivalence principle are experiments of the

Eötvös-type [Eötvös, 1890; Eötvös, Pekar, and Fekete, 1922], which measure the

gravitational acceleration of macroscopic objects.

1.1.3 Violation of the Weak Equivalence Principle of

quantum mechanics

The evidence of existence of quantum correlations will be given by the violation

of WEQ through the mass dependence of an experimentally measurable quantity

in gravitational field. The violation of WEQ can be shown both experimentally

and theoretically. Experimental evidence exists in the interference phenomenon

associated with the gravitational potential in neutron and atomic interferometry

experiments [Colella, Overhauser, and Werner, 1975; Peters, Chung, and Chu,

1999]. Theoretically, for a particle bound in an external gravitational potential,

it is seen that the radii, frequencies and binding energy depend on the mass of

the bound particle [Greenberger, 1968, 1983; Greenberger and Overhauser, 1979].

Viola and Onofrio [Viola and Onofrio, 1997] have studied the free fall of a quantum

test particle in a uniform gravitational field. They have made a rough estimation

of the fluctuations around the mean value of time of flight, which is shown to be

dependent on the mass of the particle. Another quantum mechanical approach of

the violation of WEQ was given by Davies [Davies, 2004] using a model quantum

clock [Peres, 1980]. In other examples [Ali et al., 2006; Chowdhury et al., 2012],

the violation of WEQ is shown for smaller mass particles due to the existence of

quantum correlations. It can also be shown the emergence of WEQ for larger mass

particles in the classical limit.

1.2 Uncertainty relations

Uncertainty principle is one of the most fundamental and important physical

properties of quantum mechanics [Deutsch, 1983; Heisenberg, 1927; Kraus, 1987;

Maassen and Uffink, 1988; Robertson, 1929]. It gives a fundamental limit to the

precision of measurement outcomes for the measurement of two noncommuting ob-

servables, say, position and momentum on the observed quantum system, though

there are several interpretations of this limit. Even with perfect instruments and
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techniques, the uncertainty is inherent in the nature. In the derivation of uncer-

tainty relation, the correlation of the observed system with the other system called

quantum memory is not considered. If this correlation is considered, the precision

of measurement outcome can be increased for the measurement of two noncom-

muting observables [Berta et al., 2010; Li et al., 2011; Pramanik, Chowdhury, and

Majumdar, 2013; Prevedel et al., 2011]. For example, if the observed system is

in maximally entangled state with the quantum memory, the uncertainty can be

reduced to zero. Uncertainty relation is one of the aspects, which introduces a

sharp distinction between classical and quantum physics in the sense that classical

system can be assigned with its complete state without disturbing the system,

whereas quantum mechanics denies this possibility due to the presence of uncer-

tainty relation. There are several uncertainty relations on the basis of different

methods of uncertainty measurement.

1.2.1 Heisenberg uncertainty relation and its

generalization

In 1927, Werner Heisenberg first introduced the famous uncertainty relation [Heisen-

berg, 1927], where standard deviation is used as a measure of uncertainty. Heisen-

berg uncertainty relation (HUR) states that the position and momentum of a

microscopic particle can not be measured simultaneously with arbitrary precision,

i.e., the more precisely the position of some particle is determined, the less pre-

cisely its momentum can be known, and vice versa. The formal inequality relating

the standard deviation of position x and the standard deviation of momentum

p was derived later by Kennard [Kennard, 1927] and Weyl [Weyl, 1928]. They

proved that the inherent fluctuations of position and momentum are bounded by

the Plank constant, which is mathematically given as

∆x∆p ≥ ~
2
, (1.1)

where ∆x and ∆p are the standard deviations of position and momentum

respectively. ~ ( = h/2π ) is the reduced Plank constant. The relation (1.1) is

known as the famous Heisenberg uncertainty relation.
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In 1929, Robertson [Robertson, 1929] generalized the inequality (1.1) for arbitrary

observables. For the measurement of any pair of arbitrary noncommuting Hermi-

tian operators, say, Â and B̂ on the system S, Robertson modified the Heisenberg

uncertainty relation as

∆Â∆B̂ ≥ 1

2

∣∣ 〈[ Â, B̂ ]〉ρS
∣∣ , (1.2)

where the uncertainty of measurement outcomes for the measurement of an ob-

servable Ô ∈ {Â, B̂} is given in terms of standard deviation as

∆Ô =

√
〈 Ô2 〉 − 〈 Ô 〉2 , (1.3)

and 〈 Ô 〉 = Tr [ ρS Ô ] is the expectation value of the observable Ô for the density

state ρS of the system S. The commutation relation is given by [ Â, B̂ ] :=

Â B̂ − B̂ Â.

In 1930, Schrödinger [Schrödinger, 1930] further generalized the modified inequal-

ity (1.2) given by Robertson by adding a new term for quantum states for which

the covariance of the two operators is non-zero and the generalized uncertainty

relation is given by

(∆Â)2 (∆B̂)2 ≥ 1

2

∣∣〈[ Â, B̂ ]〉ρS
∣∣ +

(
1

2

∣∣〈{ Â, B̂ }〉ρS ∣∣ − 〈 Â 〉ρS 〈 B̂ 〉ρS) ,

(1.4)

where the anticommutator { Â, B̂ } := Â B̂ + B̂ Â. For quantum states with zero

covariance of Â and B̂ , this relation (1.4) reduces to Robertson’s inequality (1.2).

In this sense, it is more general and can be applied to any two observables of a

large class of states of quantum systems.

Drawbacks :

The uncertainty relations, defined on the basis of standard deviations of the cor-

responding conjugate pair of dynamical variables are meaningful, only if both the

standard deviations are finite. There are a number of interesting statefunctions,

whose standard deviation diverges. In fact, the use of variance as a measure of

uncertainty is quite limited. Uncertainty in terms of variance of an observable

gives the average uncertainty, where the average is taken over all possible mea-

surement outcomes of the observable. Another and most important drawback is
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that both the lower limits of the inequalities (1.2) and (1.4) depend on he state of

the quantum system.

1.2.2 Entropic uncertainty relations

To improve the drawbacks of the variance-based uncertainty relations and also to

connect uncertainty with information-theoretic concepts, the uncertainty relating

to the outcomes of observables has been reformulated by Everett [Everett, 1973]

on the basis of information entropy. From the perspective of information theory,

uncertainty is nothing but the deficiency of information. He concluded that the

new relation is stronger than the variance-based relation, since it implies the former

but is not implied by the former. The entropic uncertainty relation (EUR) involves

sum of uncertainties measured in terms of Shannon entropy [Bialynicki-Birula and

Mycielski, 1975] of noncommuting observables.

Deutsch [Deutsch, 1983] first introduced the entropic uncertainty relation for two

observables. Later, the uncertainty relation was improved and the improved ver-

sion is given by

H (R) +H (S) ≥ log2

1

c
, (1.5)

which was first conjectured by Kraus [Kraus, 1987], and then proved by Maassen

and Uffink [Maassen and Uffink, 1988]. Here, H (X) ( = −
∑

i pi ln pi ) denotes

the Shannon entropy of the probability distribution {pi} of the measurement

outcomes of observable X (X ∈ {R, S} ), pi is the probability of the ith outcome

of the observable, and 1
c

quantifies the complementarity of the observable. For

nondegenerate observables,

c = max
i,j
| 〈 ai | bj 〉 |2 , (1.6)

where | ai 〉 and | bj 〉 are eigenvectors of R and S respectively. The inequality

(1.5) is a more general form of the uncertainty relation containing correlations

in all orders of two observables of a discrete variable quantum system. In case

of continuous variable systems for example using the position and momentum

distribution of a quantum system, the entropic uncertainty principle first proposed

by Bialynicki-Birula and Mycielski is given by [Bialynicki-Birula and Mycielski,
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1975]

H (X) +H (P ) ≥ ln πe . (1.7)

The advantage of these uncertainty relations over the variance-based relations is

that both the lower bounds of the inequalities (1.5) and (1.7) are independent of

the state of the system.

Recently, Berta et al. [Berta et al., 2010] have shown that the lower bound of

entropic uncertainty relation (1.5) can be improved in the presence of quantum

memory. They generalized the uncertainty relation as

S (R |B) + S (S |B) ≥ log2

1

c
+ S (A |B) , (1.8)

where S (R |B) = S (ρRB) − S (ρB) [S (S |B) ] is the conditional von Neumann

entropy, which quantifies the uncertainty corresponding to the measurement R (S)

on the system A given information stored in the system B (i.e., quantum mem-

ory). S (ρ) is the von Neumann entropy with ρRB denoting the state after R

measurement on subsystem A of ρAB and ρB denoting the reduced state of ρRB .

S(A |B) quantifies the lower bound of the one-way distillable entanglement be-

tween Alice’s system and Bob’s system [Devetak and Winter, 2005].

Drawbacks :

As a measure of uncertainty, entropy gives average uncertainty of observables,

where the average is again taken over all possible measurement outcomes of an

observable similar to variance-based uncertainty. Entropic functions do not dis-

tinguish the uncertainty inherent in obtaining any combination of outcomes for

different measurements.

1.2.3 Fine-grained uncertainty relation

To overcome the drawbacks of the uncertainty relations obtained in coarse-grained

way, where all the measurement outcomes of an observable are considered and to

capture the full nonlocal strength by quantum physics, Oppenheim and Wehner

[Oppenheim and Wehner, 2010] have introduced a completely different and new

form of the uncertainty relation known as fine-grained uncertainty relation (FUR).

Here, uncertainty is measured for a particular measurement outcome or some
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combination of outcomes to win a particular nonlocal game. The winning condition

is the essence of fine graining and every game gives rise to an uncertainty relation,

and vice versa. In discrete-variable systems, fine-grained uncertainty relation is

the strongest one.

In Ref.[Oppenheim and Wehner, 2010], Oppenheim and Wehner have considered

games for both the single qubit case and the bipartite case. In the single-qubit

system, a FUR can be described by the following game, where Alice is considered

to receive a binary question s ∈ {0, 1} with the probability p (s) = 1
2
. When

she receives the question s = 0 (s = 1), Alice measures σz (σx) observable on

her state ρA. She gets outcome as , where as ∈ {0, 1}. Alice wins the game if

she gets a particular outcome as for both the questions s = 0 and s = 1 . The

winning probability of the above game is given by

P game =
∑
s

p (s) p (as) ρA

≤ P game
max = max

ρA
P game , (1.9)

where p (as) is the probability of obtaining a particular outcome as for the mea-

surement corresponding to the question s on the state ρA. P game
max is the maximum

winning probability over all possible strategies, i.e., the choice of the single-qubit

state ρA in this game. For spin-up outcome (i.e., as = 0), P game
max = 1

2
+ 1

2
√

2

occurs for the eigenstates of (σx + σz)/
√

2. For the spin-down winning condition

(i.e., as = 1), we achieve the same maximum winning probability using eigenstates

of (σx − σz)/
√

2. These are known as maximally certain states.

For the bipartite case, authors have considered a game according to which Alice

and Bob both receive binary questions, i.e., projective spin measurements along

two different directions at each side. For this case if ρAB is a bipartite state shared

between Alice and Bob, the winning probability is given by the relation

P game( TA, TB, ρAB ) =
∑
tA, tB

p ( tA, tB )
∑
a, b

V ( a, b | tA, tB ) 〈(A a
tA
⊗ B b

tB
)〉 ρAB

≤ P game
max , (1.10)

where TA and TB represent the set of measurement settings {tA} and {tB}
chosen by Alice and Bob, respectively, with probability p ( tA, tB ). Alice and

Bob receive their binary question tA and tB , and their outcomes are a and b,
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respectively, with

A a
tA

=
1

2
[ I + (−1)aA tA ] ,

B b
tB

=
1

2
[ I + (−1)bB tB ] (1.11)

being a measurement of the observable A tA and B tB , respectively. Here,

V ( a, b | tA, tB ) is some function determining the winning condition of the game.

The winning condition corresponding to a special class of nonlocal retrieval games

(CHSH game) for which there exists only one winning answer for one of the two

parties, is given by V ( a, b | tA, tB ) = 1, if and only if a ⊕ b = tA · tB, and 0

otherwise. P game
max is the maximum winning probability of the game, i.e.,

P game
max = max

TA, TB , ρAB
P game ( TA, TB, ρAB ) . (1.12)

Using the maximum winning probability it is possible to discriminate among clas-

sical theory, quantum theory, and no-signaling theory with the help of the degree

of nonlocality [Oppenheim and Wehner, 2010]. Later, it has been generalized

for the tripartite systems [Pramanik and Majumdar, 2012]. Fine-grained uncer-

tainty relation also provides an optimal lower bound of entropic uncertainty in

presence of quantum memory [Pramanik, Chowdhury, and Majumdar, 2013]. Re-

cently, fine-grained uncertainty relation is derived for continuous variable systems

[Chowdhury, Pramanik, and Majumdar, 2015] and is demonstrated in the

Chapter 5.

1.2.4 Applications

The presence of uncertainty relations endows quantum mechanics with significant

advantages over classical mechanics for performing different information processing

tasks. Various versions of uncertainty relations have been used to detect entangle-

ment [Biswas and Agarwal, 2005; Gillet, Bastin, and Agarwal, 2008; Nha, 2007;

Simon, 2000; Wehner and Winter, 2010], to classify mixedness of states [Mal, Pra-

manik, and Majumdar, 2013], to categorize different physical theories according

to their strength of nonlocality [Dey, Pramanik, and Majumdar, 2013; Oppenheim

and Wehner, 2010; Pramanik and Majumdar, 2012], and to bound information

leakage in key distribution [Berta et al., 2010; Branciard et al., 2012; Devetak

and Winter, 2005; Furrer et al., 2012; Grosshans and Grangier, 2002; Pramanik,
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Chowdhury, and Majumdar, 2013; Pramanik, Kaplan, and Majumdar, 2014; Renes

and Boileau, 2009; Tomamichel and Renner, 2011].

1.3 EPR paradox

At the advent of quantum mechanics, a point of view of quantum mechanics arose

differentiating it from the classical view point. According to this view point

[Nielsen and Chuang, 2000], an unobserved particle does not possess physical

properties that exist independent of observation, unless otherwise an appropriate

measurement is performed upon the system. For example, according to quantum

mechanics a qubit does not possess definite properties of σz and σx observables,

the spins in the z and x directions respectively, each of which can be revealed with

certain probabilities for the possible measurement outcomes after performing the

appropriate measurement on the observables. The most prominent objector was

Albert Einstein. In 1935, Einstein in his famous ‘EPR paper’ [Einstein, Podol-

sky, and Rosen, 1935], in collaboration with Boris Podolsky and Nathan Rosen,

proposed a thought experiment demonstrating that quantum mechanics is not a

complete theory of Nature. They emphasized that any physical theory of nature

must be complete if it includes ‘elements of reality’. The way they attempted to

do the thought experiment was by introducing two assumptions,

1. Reality : If it is possible to predict with certainty (i.e., with probability 1) the

value of a physical quantity of a system, without in any way disturbing the system,

i.e., without performng any actual measurements, then there exists an element of

reality corresponding to that physical quantity.

2. Locality : Performing a measurement on one system can not have any influence

on the result of measurements on the other.

These two assumptions together are known as the assumptions of local realism.

For example, a singlet state is shared between an entangled pair of qubits belonging

to Alice and Bob, respectively. The singlet state is given by

|ψ 〉 =
| 01 〉 − | 10 〉√

2
. (1.13)

They are assumed to be far enough apart from each other and they perform their

measurements simultaneously. Now, if Alice measures σz observable on her qubit

and gets spin up outcome, then she can predict with certainty (probability 1) what
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will be the Bob’s measurement outcome if he would measure the same observable

on his qubit. So, Alice can predict that Bob will get spin down outcome. Again,

if she obtains spin down outcome, Bob’s outcome will be spin up. Therefore, σz

is the element of reality as it is possible to predict the certain value of this ob-

servable, immediately before the measurement on Bob’s qubit. Similarly, σx is

also an element of reality, for which both the observables σz and σx can be mea-

sured simultaneously with arbitrary precision for Bob’s system. This phenomenon,

which contradicts the uncertainty relation given by Heisenberg [Heisenberg, 1927],

appears as a paradox. According to the uncertainty relation, σz and σx are two

noncommuting observables. So, they can not be measured simultaneously with

arbitrary precision. This paradox is known as EPR paradox. But Einstein did not

challenge the uncertainty relation. EPR wanted to show that the quantum me-

chanical description of physical reality given by wave functions is incomplete, by

demonstrating that quantum mechanics lacked some essential element of reality,

by their criterion.

EPR explained the paradox as the information about the outcome of all possible

measurements was already present in both particles. Also the more complete the-

ory contains variables corresponding to all the elements of reality. So, there were

some ‘hidden variables’, which encoded that information. Then they concluded

that quantum mechanics was incomplete since its formalism does not permit hid-

den variables. In 1964, John Bell [Bell, 1964] showed that quantum mechanics

and the class of hidden variable theories Einstein favoured (local hidden variable

theory) would lead to different experimental results. There are many experiments

to test Bell’s theorem, e.g., those of A. Aspect and others [Aspect, Dalibard,

and Roger, 1982; Aspect, Grangier, and Roger, 1981, 1982]. They support the

predictions of quantum mechanics rather than the local hidden variable theories

supported by Einstein. Realist interpretation of quantum mechanics must reject

either locality or realism.

1.4 Classification of entanglement

In EPR paradox [Einstein, Podolsky, and Rosen, 1935], it appears that one particle

somehow knows what measurement has been performed on the other particle, and

with what outcome, even though there is no known means for communication

of such information between the particles. The word ‘entanglement’ was first
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coined by Schrödinger [Schrödinger, 1935, 1936] to describe the property of such

spatially separated but quantum mechanically correlated particles. Entanglement

is a physical phenomenon which occurs in quantum domain. If a pairs or groups of

particles are entangled, then each particle can not be fully described by quantum

mechanics without considering the other.

Quantum systems can become entangled through various types of interactions

such as using spontaneous parametric down conversion, fiber coupler, quantum

dots, entanglement swapping etc. Even though two particles are presently not

interacting (interacted once before) and also remote from one another, then they

still may be entangled if their shared state can not be written as the mixture of

product of the states of individual subsystems. Entanglement is broken through

the interaction of the entangled particles with the environment (decoherence).

There are two types of entangled states : pure entangled and mixed entangled.

For the bipartite case, let us consider two particles A and B associated with fi-

nite dimensional Hilbert spaces HA and HB, respectively. The state space of the

composite system is given by the tensor product H = HA ⊗HB.

1.4.1 Pure entangled states

Consider, |ψ 〉 (∈ HA⊗HB) be the pure state of the composite system, and |ψ 〉A
and |ψ 〉B are that of the subsystems A and B, respectively. |ψ 〉 is said to be

separable state, if it can be written in the form

|ψ 〉 = |ψ 〉A ⊗ |ψ 〉B . (1.14)

When the composite pure state can not be written in this form, i.e., in the form of

the product of individual states of subsystems, it is called entangled state. When

a pair of systems share an entangled pure state, it is not possible to assign states

to individual systems. In general, a bipartite pure state is entangled if and only if

its reduced states are mixed rather than pure. The more uncertainty statistically

will cause larger entropy. So, the zero entropy of a composite pure state indicates

that there is no uncertainty about a system in pure state, whereas the entropy of

each subsystem of the composite system gives maximum entropy for 2× 2 mixed

states.
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For the case of multipartite system, let a composite system, consisting of n sub-

systems has state space H = H1 ⊗ .... ⊗Hn. A pure state |ψ 〉 (∈ H) is said to

be entangled if

|ψ 〉 6= |ψ 〉1 ⊗ ....⊗ |ψ 〉n , (1.15)

where |ψ 〉i is a pure state of the i-th subsystem.

1.4.2 Mixed entangled states

Let us consider bipartite mixed state case. A mixed state of the composite system

is described by density matrix ρ acting on the Hilbert space of the composite

system, H = HA⊗HB. When there is less than total information about the state

of a quantum system, we need density matrices to represent the state. The density

matrix of a pure state |φ 〉 is described by the outer product, ρφ = |φ 〉 〈φ | . For

separable mixed states, ρ can be written as

ρ =
∑
k

pk ρ
k
A ⊗ ρkB , (1.16)

where pk ≥ 0 and
∑

k pk = 1, {ρkA} and {ρkB} are the pure ensembles of the

respective subsystems. It is clear from the definition that the family of separable

states is a convex set. ρ is said to be entangled if it can not be written in the

form given above, i.e., it can not be written as the mixture of product states of

individual systems. A mixed state with rank 1 describes a pure ensemble.

For a multipartite system consisting of n subsystems, a mixed state ρ acting on the

state space H ( = H1⊗ ....⊗Hn ) of the composite system is said to be entangled

if

ρ 6=
∑
k

pk ρ
k
1 ⊗ ....⊗ ρkn , (1.17)

where ρki is the pure ensemble of i-th subsystem.
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1.4.3 Applications

Entanglement has many applications in quantum information-processing tasks

that can not be achieved by any other means. Superdense coding and quantum

teleportation are two important applications of entanglement. Technologies rely-

ing on quantum entanglement are now being developed. In quantum cryptography,

entangled particles are used to transmit signals that can not be eavesdropped upon

without leaving a trace. In quantum computation, entangled quantum states are

used to perform computations in parallel, which may allow certain calculations to

be performed much more quickly than they ever could be with classical computers.

1.5 Classification of steering

In the pioneering work of Einstein, Podolsky and Rosen (EPR) [Einstein, Podol-

sky, and Rosen, 1935], EPR argued that the quantum mechanical description of

the state of a particle is not complete, when one considers a position-momentum

correlated state of two particles, and assumes the notions of spatial separability,

locality, and reality to hold true at the level of quantum particles. This is arguably

a paradoxical feature of quantum mechanics and is well known as EPR paradox.

An immediate consequence of correlations between spatially separated particles

was then noted by Schrödinger [Schrödinger, 1935, 1936] in that it allowed for the

control of the state on one side merely by the choice of the measurement basis on

the other side without in any way having direct access to the affected particle. So,

the EPR paradox was reexpressed as the possibility of steering by Schrödinger.

This is also known as EPR steering.

Uncertainty relations are linked directly to the ability of quantum states to en-

able steering. Starting with the Heisenberg uncertainty relation, a number of im-

proved uncertainty relations have been provided [Bialynicki-Birula and Mycielski,

1975; Maassen and Uffink, 1988; Oppenheim and Wehner, 2010; Robertson, 1929;

Schrödinger, 1930; Wehner and Winter, 2010]. Again, stronger steering criteria are

built up with the help of stronger uncertainty relations. To capture steering of an

entangled state, one needs to built up some steering inequalities using uncertainty

relations.
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1.5.1 The Reid criterion for steering

The phenomenon of quantum steering [Schrödinger, 1935, 1936] emerging from the

EPR paradox [Einstein, Podolsky, and Rosen, 1935] was first formulated by Reid

for experimental realization [Reid, 1989]. She proposed the EPR steering crite-

rion for continuous variable systems based on the position-momentum Heisenberg

uncertainty relation, in terms of an inequality involving products of inferred vari-

ances of incompatible observables. For two conjugate observables X̂1 and X̂2,

which are noncommuting, the Reid inequality is given by

( ∆inf X̂1 )2 ( ∆inf X̂2 )2 ≥ 1 , (1.18)

where ∆inf X̂i is the variance of the inferred observables X̂i [ i ∈ {1, 2} ]. For

a given bipartite entangled state, the violation of the above inequality will give

the EPR steering of that state. Ou et al. [Ou et al., 1992] gave an experimental

demonstration of the EPR paradox for the case of two spatially separated and

correlated light modes. The EPR criterion has been used to demonstrate the

steerability of two mode squeezed vacuum states [Steinlechner et al., 2013] exper-

imentally and entanglement in Bose-Einstein condensates, as well [He et al., 2012,

2011; Opanchuk et al., 2012]. Other works have shown that the Reid inequal-

ity is effective in giving demonstration of the EPR paradox for systems in which

correlations appear at the level of variances.

Drawback :

The steerability of the states having correlations higher than the second order

remains unable to be captured by the Reid criterion for EPR steering, although

the Bell nonlocal correlation for that states may be exhibited [Chowdhury et al.,

2014; Walborn et al., 2011]. In Chapter 4, the failure of the Reid criterion is

demonstrated for some non-Gaussian states.

1.5.2 The entropic steering criterion

To improve the situation produced by the Reid criterion for EPR steering and to

derive more stronger steering inequality, in terms of an information-theoretic task

Walborn et al. [Walborn et al., 2011] have introduced a new steering criterion
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on the basis of more general entropic uncertainty relation proposed by Bialynicki-

Birula and Mycielski [Bialynicki-Birula and Mycielski, 1975]. Entropic functions

by definition incorporate correlations up to all orders. They have considered

that the measurements correspond to either position or momentum. For steer-

able states, correlations between the measurement outcomes of Alice and Bob can

not be explained by a local hidden state (LHS) model. So, for continuous variable

systems, the entropic steering inequality can be written as the sum of conditional

Shannon entropies [Walborn et al., 2011]

h (XB |XA) + h (PB |PA) ≥ ln πe , (1.19)

where XA, XB are the correlated positions and PA, PB are the correlated mo-

menta of the particles possessed by Alice and Bob, respectively. The EPR steering

criterion (1.18) derived by Reid [Reid, 1989] can be obtained as a limiting case

of the entropic steering criterion (1.19). The new criterion can be used to show

steerability not only for Gaussian states having correlations upto second order

but also for pure entangled non-Gaussian states [Walborn et al., 2011], for which

Reid criterion fails to detect steerability. Since entanglement is a weaker form of

correlations compared to steering [Cavalcanti et al., 2009; Wiseman, Jones, and

Doherty, 2007], it is clear that for such entangled non-Gaussian states the steering

correlations appear at the level of higher than the second order (variances). There-

fore, the criterion (1.19) is more sensitive than the Reid criterion (1.18). Chapter

4 includes the steerability of some class of entangled non-Gaussian states through

the entropic steering criterion [Chowdhury et al., 2014].

For discrete variable systems, the lower bound of the entropic steering inequality

(1.19) will be changed according to the discrete version of the entropic uncertainty

relation given by the inequality (1.5). In terms of conjugate pairs of discrete

variables {RA, SA} and {RB, SB} , the entropic steering inequality can be written

as [Schneeloch et al., 2013]

H (RB |RA) +H (SB |SA) ≥ log2

1

c |B
, (1.20)

Here, the correlations exist between RA and RB (SA and SB ), and c |B is the

value of c given by the Eq.(1.6) associated with the observables of Bob’s system.

The steerability is to be shown through the violation of the steering inequalities

(1.19) and (1.20).



Chapter 1. General introduction 18

Drawback :

Although entropic steering criterion overcomes the drawbacks of Reid criterion for

steering, it has also some drawbacks itself. In continuous variable systems, there

are some non-Gaussian states like NOON states, for which entropic steering crite-

rion detects steerability only with N = 1 [Chowdhury et al., 2014]. But for N ≥ 2,

these states are not steerable through the entropic criterion in spite of violating

Bell-type inequalities for all N [Bell, 1964; Clauser et al., 1969; Wildfeuer, Lund,

and Dowling, 2007]. So, NOON states should be steerable for all values of N since

steering lies between entanglement and nonlocality in the hierarchy [Wiseman,

Jones, and Doherty, 2007] of quantum correlations.

1.5.3 The fine-grained steering criterion

The tightest steering inequality in discrete variable systems is obtained [Pramanik,

Kaplan, and Majumdar, 2014] through the application of the fine-grained uncer-

tainty relation (FUR), first proposed by Oppenheim and Wehner [Oppenheim

and Wehner, 2010]. Fine-graining makes it possible to distinguish the uncertainty

inherent in obtaining any particular combination of outcomes for different mea-

surements. They bound an event corresponding to win a nonlocal retrieval game

considered between Alice and Bob by its minimum possible uncertainty, or maxi-

mum possible certainty, for two incompatible observables. In discrete variable sys-

tems, fine-grained uncertainty relation given by the inequality (5.3) is the strongest

uncertainty relation. If the combined state between Alice and Bob is steerable,

Alice’s measurement outcome a for the measurement chosen randomly from the

set A ∈ {S, T } and Bob’s measurement outcome b for the measurement chosen

randomly from the set B ∈ {P , Q} can not be written in terms of local hidden

state (LHS) model. So, For discrete variable systems, the fine-grained steering

inequality is given by the sum of conditional probabilities [Pramanik, Kaplan, and

Majumdar, 2014]

P (bP | aS) + P (bQ | aT ) > 1 +
1√
2
, (1.21)

where Alice has prior knowledge of Bob’s measurement settings. The steerable

states must satisfy the inequality (1.21). The new steering inequality (1.21) im-

proves over previous ones since it can experimentally detect all steerable two-qubit
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Werner state considering only two measurement settings on each side and it is also

able to show that pure entangled states are maximally steerable as well [Pramanik,

Kaplan, and Majumdar, 2014] .

For continuous variable systems, the improved version of steering criterion over

the inability of the entropic criterion to show the steerability of NOON states for

N ≥ 2 is introduced in Chapter 5 based on newly derived fine-grained uncertainty

relation using continuous variables [Chowdhury, Pramanik, and Majumdar, 2015].

1.6 Bell nonlocality

Inspired by the early works of EPR and Schrödinger, Bell was the first who pro-

posed a new formalism [Bell, 1964; Clauser et al., 1969] for quantifying the correla-

tions in terms of joint measurements of observables corresponding to two spatially

separated particles for the case of any general theory obeying the tenets of locality

and realism, and derived Bell’s inequality. Bell’s theorem brings a compelling ex-

ample of an essential difference between quantum and classical physics. It states

that any physical theory of local hidden variables can not reproduce all the pre-

dictions of quantum mechanical theory.

To obtain Bell’s inequality, it is considered that Charlie prepares a pair of particles

A and B in a combined state ρAB. He sends particle A to Alice and particle B

to Bob. He repeats this process many times. After receiving her particle, Alice

could choose to measure randomly one of two different observables labelled by A1

and A2 . Similarly, Bob is capable of measuring randomly one of two different

observables B1 and B2 . The measurement of each observable has dichotomic

outcomes yielding either the value +1 or −1. It is assumed that Alice and Bob are

far enough apart from each other and perform their measurements simultaneously.

Therefore, performing a measurement on one system can not have an influence on

the result of measurements on the other system since any physical influence can

not propagate faster than light. Considering these, Bell’s inequality is given by

| 〈A1 ⊗ B1 〉+ 〈A1 ⊗ B2 〉+ 〈A2 ⊗ B1 〉 − 〈A2 ⊗ B2 〉 | ≤ 2 . (1.22)

This is also known as Bell-CHSH inequality [Clauser et al., 1969]. The above

inequality is upper bounded by 2 under local hidden variable (LHV) theory. Bell-

nonlocal correlations are those for which at least any Bell’s inequality is violated
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indicating nonexistence of LHV model. In deriving Bell’s inequality, quantum

mechanics is not considered at all, only probability theory is invoked. So, Bell-

nonlocal correlations are the strongest one in quantum mechanics. As for example

[Nielsen and Chuang, 2000], we consider that Alice and Bob share singlet state

given by the Eq.(1.13), which is maximally entangled state. If they perform mea-

surements of the following observables :

A1 = Z1 A2 = X1

B1 =
−Z2 −X2√

2
B2 =

Z2 −X2√
2

, (1.23)

the value of the Bell sum will become 2
√

2 , which is the maximum Bell violation

in quantum mechanics. So, quantum mechanics does not allow LHV theory. It

turns out that Nature experimentally agrees with quantum mechanics. To derive

his famous inequality, Bell considered two assumptions, which are 1) Reality and

2) Locality. Therefore, at least one of the assumptions is violated by quantum

mechanics. It is possible to infer that violation of Bell’s inequality is due to

the presence of nonlocal character of quantum mechanics known as “quantum

entanglement”. Bell’s inequality was shown to be violated in quantum mechanics

in several subsequent experiments [Aspect, Dalibard, and Roger, 1982; Aspect,

Grangier, and Roger, 1981, 1982].

1.7 The utility of the Wigner function in

continuous-variable systems

Quasiprobability distributions are mathematical objects, which satisfy several gen-

eral features of ordinary probability distributions. Quasiprobability distributions

arise naturally to study the phase space representation of quantum mechanics

on top of the operator mechanics and are commonly used in quantum optics,

time-frequency analysis [Cohen, 1995], and elsewhere. In this representation, the

expectation values and probabilities of physical quantities are evaluated by rules

of the classical statistics. In contradiction to the ordinary probabilities, some

quasiprobability distributions have regions of negative probability density. When
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the density operator is represented in a diagonal form, i.e., with respect to an over-

complete basis, then it can be written in a way more like an ordinary function, at

the expense that the function has the features of a quasiprobability distribution,

evolution of which completely determines the evolution of the system.

There exists a family of different quasiprobability distributions, depending on dif-

ferent operator orderings. The most important of these in the general physics

literature is the Wigner quasiprobability distribution [Wigner, 1932] introduced

by E. P. Wigner in 1932, which is related to symmetric operator ordering given by

the Weyl transform. In constructing the possible phase-space distribution, he had

to give up the positivity property of the distribution for states, which have no clas-

sical model. Thus the Wigner distribution could be negative, which is a convenient

indicator of quantum mechanical interference. The formalism of Wigner theory

demonstrates an autonomous description of the quantum world. The Wigner func-

tion, which yields the correct marginal distributions for a quantum system, is in

one hand the phase space counterpart of the density matrix and the quantum

counterpart of the classical distribution function on the other hand. Both states

and observables are represented by functions of the phase space coordinates. This

function is very useful in a variety of fields as it always exists but remarkably

used in quantum optics, particularly in the characterization and visualization of

nonclassical fields.

The fully symmetric Weyl order contains some of the basic properties of a char-

acteristic function of a probability distribution [Tatarskii, 1983]. So, the Wigner

quasiprobability distribution can be written in terms of characteristic function,

from which all quantum mechanical expectation values can be derived. Also, it is

well known that a probability distribution is nothing but the Fourier transform of

the characteristic function. Therefore, the Wigner function is defined as

W (α) =
1

π2

∫
d2β Tr [ ρD(β) ] exp [− ( β α ∗ − β ∗ α) ] , (1.24)

which is a two-dimensional Fourier transform of the quantum mechanical charac-

teristic function

Tr [ ρD(β) ] = 〈D(β) 〉 ,

D(β) = exp [ β a † − β ∗ a ] . (1.25)
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Here, D(β) is the displacement operator for the complex phase-space displacement

β, and a and a† are the annihilation and creation operators, respectively with the

commutation relation [ a, a† ] = 1. ρ is the density matrix of the respective

quantum system. The Wigner function should be normalised, i.e.,∫
W (α) d2α = 1 . (1.26)

This is a real, square integrable function and also remains bounded.

Banaszek and Wodkiewicz [Banaszek and Wodkiewicz, 1998, 1999] have used the

two mode Wigner function instead of joint probability to derive the Bell like in-

equality in continuous variable systems. This becomes possible because they were

able to express the Wigner function as an expectation value of a product of dis-

placed parity operators and the parity plays the same role as spin-1/2 observables

in discrete variable systems due to the property of getting dichotomic outcomes

of both the observables.

In addition to the Wigner representation of phase-space defined above, there are

many other quasiprobability distributions that arise in alternative representations

of the phase space distribution, e.g., Glauber P, Husimi Q distributions. These

representations are all interrelated to each other.

1.8 Quantum cryptography and quantum key

distribution protocols

Quantum cryptography is the study to perform cryptographic tasks, i.e., the tech-

niques for secure communication of encrypted messages in presence of third party

by exploiting quantum mechanical properties. The advantage of quantum cryptog-

raphy lies in the fact that it allows the completion of various cryptographic tasks

that are impossible to be performed using only classical communication. The best

known and developed application of this is quantum key distribution, which offers

an information-theoretic secure solution to the key exchange problem.

Quantum key distribution (QKD) uses quantum mechanics to guarantee secure

communication. In quantum key distribution protocol, the two communicating

users, Alice and Bob share a random secret key, which remains unknown to any
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third party, say, Eve trying to gain the knowledge of the key. This is achieved

by Alice encoding the bits of the key as quantum data and sending them to Bob.

The fundamental aspect of quantum mechanics says that the measurement on a

quantum state in general changes the state except for the eigenstates of a system.

Therefore, the very act of reading the data encoded in a quantum state by Eve

must in some way measure it, introducing detectable anomalies. This will make

Alice and Bob able to detect the presence of an eavesdropper. This is an important

and unique property of QKD. The secret key can be used to encrypt messages by

the sender (Alice) and decrypt messages by the receiver (Bob).

If the level of eavesdropping is below a certain threshold, a key can be produced

that is guaranteed to be secure, i.e., the eavesdropper has no information about it,

otherwise no secure key is possible and communication is aborted. In contradiction

with the classical key distribution, the security of QKD can be proven mathemat-

ically without imposing any restrictions on the abilities of an eavesdropper. This

is usually described as unconditional security, although there are some minimal

assumptions required including that the laws of quantum mechanics apply and

that Alice and Bob are able to authenticate each other.

Quantum key distribution is only used to produce and distribute a key, not to

transmit any message data. This key can then be used with any chosen encryption

algorithm to encrypt (and decrypt) a message, which can then be transmitted over

a standard communication channel.

QKD exploits certain properties of information-encoded quantum states to ensure

its security. There are two main categories of QKD depending on which property

they exploit : prepare and measure protocols, and entanglement based protocols.

The examples of both the protocols described below use discrete variable coding.

Each of these two approaches can be further divided into three families of proto-

cols: discrete variable, continuous variable and distributed phase reference coding.

Among them, discrete variable protocols are the most widely implemented. The

other two families are mainly concerned with overcoming practical limitations of

experiments.
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1.8.1 Prepare and measure protocols

This is based on quantum indeterminacy (i.e., measuring an unknown quantum

state changes that state in some way), which underlies the results of Heisenberg

uncertainty principle, information-disturbance theorem and no cloning theorem.

This property can be used as a resource to detect eavesdropping if any and to

calculate the amount of information that has been intercepted. The example of

this type of protocols is BB84 protocol, which is first proposed by Bennet and

Brassard in 1984 [Bennett and Brassard, 1984], and which is described below.

BB84 Protocol :

Assume that Alice and Bob wish to exchange a message securely. Alice initiates

the message by sending Bob a secret key, which will be the mode for encrypting the

message data. Eve has the objective to obtain some information about this secret

key. Consider that Alice and Bob have access to a noiseless quantum channel and

also a classical authenticated channel. Eve can act freely on the quantum channel

as she has total access to the quantum channel, keeping in mind that she would

be able neither to duplicate the quantum information (No-Cloning theorem) nor

to measure a quantum state completely (Heisenberg uncertainty relation). But

she can only listen to what happens on the classical channel, which makes her

impossible to modify the information sent through the classical channel.

Alice chooses a random measurement basis from B0 and B1 given by

B0 = { | 0 〉, | 1 〉 } and B1 =

{
| 0 〉+ | 1 〉√

2
,
| 0 〉 − | 1 〉√

2

}
, (1.27)

which are σz and σx bases, respectively and also chooses a bit at random from

{0, 1}. If the bit is 0, she sends the first state of her bases to Bob, if it is 1 she

sends the second state of her bases. She repeats this procedure N times and sends

the N resulting states to Bob.

After receiving all the states, Bob measures them randomly either in B0 or in B1

basis. He obtains N bits string, known as raw key after performing measurements

on N states. Next, Alice and Bob announce their individual measurement basis

through the classical communication channel but not the results they obtained.
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When both the bases match with each other, they keep the corresponding bit of

their string. When they differ, they discard the corresponding bit. Therefore,

they obtain a string of n bits, which is smaller than N (n < N ) that they agree

on (called the sifted key). This is the secret key shared between Alice and Bob.

Whenever Eve introduces errors to know about the key, Alice and Bob can no-

tice it easily as their respective sifted key would differ, so that any subsequent

communication making use of it to encrypt and decrypt messages would fail.

The goal of this protocol is to make sure that the knowledge of Eve about a secret

key shared between Alice and Bob is very small. So, with high probability, either

Alice and Bob will agree on a key about which Eve’s knowledge is very small, or

Alice and Bob will decide to abort the key and try again, possibly with a different

quantum channel as the security of the key can not be guaranteed. In order to

bound Eve’s knowledge about their secret key, Alice and Bob can apply a Privacy

Amplification scheme [Bennett et al., 1995; Deutsch et al., 1996].

1.8.2 Entanglement based protocols

For an entangled state, measurement on one object affects the other. If Alice and

Bob share an entangled state, anyone intercepting either object alters the overall

system, revealing the presence of the third party and the amount of intercepted

information. Here, entanglement can be used as a resource. The example of this

type of protocols is E91 protocol, which is described below.

E91 Protocol :

In 1991, Ekert [Ekert, 1991] first proposed that quantum key distribution be im-

plemented using the quantum states. This protocol is a modification of original

Bennet-Brassard protocol and takes into consideration of EPR states. Let us con-

sider that after preparing an entangled pair of spin-1/2 particles by a source, one

particle is sent to Alice and other is sent to Bob. The state shared between Alice

and Bob is maximally entangled, e.g., spin-singlet state given by the Eq.(1.13).

If the particles are travelling along the z-direction, the measurement basis vectors

of Alice and Bob are defined as being located in the x − y plane perpendicular

to the trajectory of the particles. Alice randomly chooses to measure the spin
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of incoming particles from the set of basis
{
A1 = σx, A2 = σx +σy√

2
, A3 = σy

}
and similarly, Bob measures randomly chosen from the set

{
B1 = σx +σy√

2
, B2 =

σy, B3 = −σx +σy√
2

}
. All the steps of this process is repeated for N times. Af-

ter performing N measurements by both Alice and Bob, they publicly discuss

about their measurement basis chosen for each particular measurement. They

separate the measurements in two groups. In the first group, they accumulate the

measurements performing in incompatible bases and the second group consist of

measurements performing with compatible bases.

The correlation coefficient of joint measurements for the choice of Alice’s basis Ai
and Bob’s basis Bj is given by

C (Ai, Bj) = P++ (Ai, Bj) + P−− (Ai, Bj)− P+− (Ai, Bj)− P−+ (Ai, Bj) ,

(1.28)

where i, j = 1, 2, 3 . P±± (Ai, Bj) is the joint probability of getting the result ±1

for Alice’s choice of spin measurement Ai and of getting the result ±1 for Bob’s

choice of spin measurement Bj . If Alice and Bob choose incompatible bases to

measure their respective particles, only then they publicly announce the actual

measurement results they obtained and can figure out the value of the Bell sum,

which can be written in terms of correlation coefficients of joint measurements as

B = C (A1, B1)− C (A1, B3) + C (A3, B1) + C (A3, B3) . (1.29)

Using local realism, Bell proved that |B | ≤ 2 . For maximally entangled states

[Eq.(1.13)], |B | = 2
√

2 , i.e., violation of Bell’s theorem occurs. In absence of an

eavesdropper, |B | should be equal to 2
√

2 . This assures Alice and Bob that when

Alice and Bob choose compatible bases, their measurement results will be anti-

correlated and can be converted into a secret string of bits, i.e., the key. The 1/3

chance that Alice and Bob will choose compatible bases to measure the incoming

particles can shrink the key down to 30% of its original size, leaving them with

a sifted key, which may be used in a conventional cryptographic communication

between Alice and Bob. Within the sifted secret key, the spin up and spin down

states of the particles correspond to bit values 0 and 1, respectively.

The entanglement present between Alice and Bob makes an eavesdropper, say,

Eve hard to gain information about the key. The information about a system

does not exist until an actual measurement has been performed on the system and
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then communicated publicly. To know the key, Eve can provide a state, which

is entangled with Alice’s and Bob’s system but Alice and Bob do not receive

their expected value of B . So, in presence of an eavesdropper, |B | < 2
√

2 .

Future real life situations is more accurately indicated by the Ekert protocol as a

practical implementation of quantum cryptography would involve a central source

to overcome the distance limitations.

1.9 Non-Gaussian states and their usefulness

There exist both the theoretical and experimental demonstrations of all the quan-

tum properties using Gaussian states. But it is realized that Gaussian states are

a rather special class of states and it is quite difficult to achieve such special

states experimentally. Gaussian states are defined as those states described by

a Gaussian Wigner function, which differs from the non-Gaussian nature of the

Wigner function of non-Gaussian states. The non-Gaussian states can be gen-

erated in different procedures, e.g., by truncating the Gaussian distribution or

by the processes of photon subtraction and addition [Agarwal, 2013], and these

states generally have a higher degree of entanglement than the Gaussian states.

Also, non-Gaussian state can be constructed by the superposition of the Gaussian

states. As for example, entangled non-Gaussian states can be constructed by the

superposition of the energy eigenstates of the two-dimensional harmonic oscillator.

Schrödinger’s cat states, some mixtures of squeezed or coherent states etc. are also

the examples of non-Gaussian states.

As the non-Gaussian states are rich in entanglement than the Gaussian states, the

former have applications in tests of Bell inequalities, quantum teleportation and

other quantum information protocols [Lee et al., 2011; Lloyd and Braunstein, 1999;

Opatrny, Kurizki, and Welsch, 2000; Seshadreesan, Dowling, and Agarwal, 2015;

Takahashi et al., 2010]. Extensions of the entanglement criteria for non-Gaussian

states have been proposed recently [Ivan et al., 2011; Roncaglia, Montorsi, and

Genovese, 2014]. Non-Gaussianity is needed for entanglement distillation and

quantum computation. Since the steering of correlated systems has started being

studied only recently, and EPR steering for Gaussian states has been studied

extensively both theoretically and experimentally, now it becomes important to

understand the steering of systems with non-Gaussian correlations. A particular

example of a non-Gaussian state was considered by Walborn et al. [Walborn
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et al., 2011] revealing steering through the entropic inequality. Non-Gaussian

entanglement and steering have also been recently studied in the context of Kerr-

squeezed optical beams [Olsen and Corney, 2013].

1.10 Outline of thesis

In this thesis, some properties of quantum mechanics are studied using several

classes of important non-Gaussian states for continuous variable systems. The

outline of this thesis, which actually points towards the fact that non-Gaussian

states are more nonlocal, is briefly given below.

In Chapter-2, we have studied the mass dependence of both the position detection

probabilities for quantum particles projected upwards against gravity around the

classical turning point and the point of initial projection, and also the mean arrival

time of freely falling particles, using a class of non-Gaussian wave packets, which

depart from the Gaussian wave packet by a continuous and tunable parameter.

We have shown the stronger violation of the WEQ by increasing the non-Gaussian

parameter of the wave packet through the mass dependence of the probabilities

and the mean arrival time [Chowdhury et al., 2012]. Then, we have used a selection

of Bohm trajectories to illustrate these features in the free fall case.

In Chapter-3, we have considered Laguerre-Gaussian beam, which is a classical

optical beam with topological singularities and possesses Schmidt decomposition.

We have shown that such classical beams share many features of two mode en-

tanglement in quantum optics. We have demonstrated the coherence properties

of such beams through the violations of Bell’s inequality for continuous variables

using Wigner function formalism due to the presence of correlations between two

different modes of the beam. The magnitude of the Bell violation is shown to be

increased with higher orbital angular momenta of the vortex beam [Chowdhury,

Majumdar, and Agarwal, 2013]. So, we have shown the mathematical reinterpre-

tation of quantum nonlocality in classical theory.

In Chapter-4, we have demonstrated the steerability of several classes of currently

important non-Gaussian entangled states [Chowdhury et al., 2014], such as the

two-dimensional harmonic oscillator, the photon-annihilated two mode squeezed

vacuum, and the NOON states forN = 1 only, through the violation of the entropic

steering inequality. We have shown that the steerability of those states remains
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unable to be captured by the Reid criterion, whereas that of Gaussian states is

demonstrated using the Reid criterion. We have also provided a comparative study

of violation of the Bell inequality for these states, from which it is shown that the

entanglement present is more easily revealed through steering compared to Bell

violation for several such states.

In Chapter-5, we have derived a fine-grained uncertainty relation for the measure-

ment of two incompatible observables on a single quantum system of continuous

variables, and have shown that continuous variable systems are more uncertain

than discrete variable systems. Using the derived fine-grained uncertainty rela-

tion, we have formulated a stronger steering criterion, which has the ability to

reveal the steering property of NOON states for all N ≥ 2, which remains unable

to be captured by any other previously derived steering criterion. We have also

shown that the newly derived uncertainty relation has improved the lower bound

on the secret key rate of a one-sided device independent quantum key distribution

protocol for continuous variable systems [Chowdhury, Pramanik, and Majumdar,

2015] than that obtained in discrete variable systems.

In the last chapter, i.e., in Chapter-6, we have summarized the important results

obtained in this thesis. We have also discussed about some future directions of

study in this connection.



Chapter 2

Violation of Weak Equivalence

Principle in quantum mechanics

The Equivalence Principle which is a consequence of the equality of gravitational

and inertial masses [Galilei, 1638], was tested experimentally for classical test

bodies to high precision. The validity of the Equivalence Principle for quantum

mechanical particles has been tested through the gravity-induced interference ex-

periments [Colella, Overhauser, and Werner, 1975; Peters, Chung, and Chu, 1999].

The possibility of violation of the weak equivalence principle in quantum mechan-

ics (WEQ), which is the weak version of the equivalence principle adopted to the

quantum mechanical framework, is discussed in a number of papers, for instance

using neutrino mass oscillations in a gravitational potential [Adunas, Milla, and

Ahluwalia, 2001; Gago, Nunokawa, and Funchal, 2000; Gasperini, 1988; Halprin

and Leung, 1996; Krauss and Tremaine, 1988; Mureika, 1997]. The WEQ can

be shown to be violated in quantum mechanics both theoretically [Greenberger,

1968, 1983; Greenberger and Overhauser, 1979] and experimentally [Colella, Over-

hauser, and Werner, 1975; Peters, Chung, and Chu, 1999]. One of the quantum

mechanical approach of the violation of WEQ was given by Davies [Davies, 2004]

for a quantum particle in a uniform gravitational field using a model quantum

clock [Peres, 1980] as shown through the mass dependence of the tunnelling depth

of the particle in the classically forbidden region.

In another way, Ali et al. have given the example of violation of WEQ for quantum

particles represented by Gaussian wave packets projected upwards against gravity

30
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[Ali et al., 2006]. They have shown the violation through the explicit mass de-

pendence of the position detection probabilities around both the classical turning

point and the point of initial projection and of the mean arrival time of freely

falling particles at an arbitrary detector location using Gaussian wave packet.

It is now interesting to know how WEQ works for quantum particles represented

by parametrized non-Gaussian wave packets. In real experiments, realization of

exactly Gaussian wave packets is rather difficult . One of the aims of our study

is to enable relaxation of the wave packet to be Gaussian. Therefore, the non-

Gaussian nature of the wave packet can facilitate the experimental observation of

the violation of WEQ, as well as enable a quantitative verification of the way the

violation of WEQ depends on the departure from the Gaussian nature of the wave

packet.

2.1 Initial wave function and it’s time evolution

Let us consider an ensemble of quantum particles in an external gravitational

potential. The initial state of each particle is represented by a one-dimensional

non-Gaussian wave function, given as

ψ(z, t = 0) = N

[
1 + α sin

(
π

4σ0

z

)]
e
− z2

4σ20
+ i k0 z

. (2.1)

Here, α is the tuneable parameter varying from 0 to 1. N is the normalisation

factor given by

N =

(√
2π σ0

[
1 +

α2

2
(1− e−π2/8)

])− 1/2

. (2.2)

The salient features corresponding to the above wave packet are its asymmetry due

to the presence of sine function, its infinite tail, and its reduciblity to a Gaussian

wave packet upon a continuous decrement of the parameter α to zero. The property

of an infinite tail of the above wave function is not associated with non-Gaussian

forms that are generated by truncating the Gaussian distribution. For α = 0,

we get the Gaussian wave function. Here, we have restricted ourselves to a one-

dimensional representation along the vertical z direction.
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The initial group velocity is given by u = ~ k0
m

, where m is the mass of the particle

and k0 is the wave number. In the Schrödinger picture, the mean initial conditions

for the initial wave functions ψ1 and ψ2 representing particles 1 and 2 respectively

are

〈 ẑ 〉ψ1 = 〈 ẑ 〉ψ2 = 〈 ẑ(0) 〉 ,
〈 p̂z 〉ψ1

m1

=
〈 p̂z 〉ψ2

m2

= u , (2.3)

where 〈 ẑ 〉ψ and 〈 p̂z 〉ψ represent the expectation values for position and momen-

tum operators respectively. The propagator of a particle in the linear gravitational

potential V = mgz is given below

G(z, t | y, 0) =

√
m

2π i ~ t
e
im
2 ~ t (z−y)2− im g t

2 ~ (z+y)− im g2 t3

24 ~ (2.4)

Using this propagator in the relation

ψ(z, t) =

∫
dy G(z, t | y, 0)ψ(y, 0) , (2.5)

one can obtain the Schrödinger time evolved wave function ψ(z, t) at any subse-

quent time t as

ψ(z, t) = N

√
σ0

st
e
im
2 ~ t [ z

2−g t2 z− g
2 t4

12
]

×
[
e
− im

2 ~ t
σ0
st

[ z− ~ t
m
k0+ g t2

2
]2

+
α

2 i
e
− im

2 ~ t
σ0
st

[ z− ~ t
m

(k0+β)+ g t2

2
]2

− α

2 i
e
− im

2 ~ t
σ0
st

[ z− ~ t
m

(k0−β)+ g t2

2
]2
]
, (2.6)

where st = σ0

(
1 + i ~ t

2mσ2
0

)
and β = π

4σ0
. The probability density (|ψ(z, t) |2) is

given by

ρ(z, t) = N2 σ0

σG
eE1

[
eE2 + α

(
eE3 sinA1 + eE4 sinA2

)
+
α2

4

(
1 + eE5 − 2 eE6 cosA3

) ]
, (2.7)
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where

E1 = −
[
π ~ t+ 4mσ0

(
z − u t+ 1

2
g t2

) ]2
32m2 σ2

G σ
2
0

,

E2 =
π ~ t

[
π ~ t+ 8mσ0

(
z − u t+ 1

2
g t2

) ]
32m2 σ2

G σ
2
0

,

E3 =
π ~ t

[
π ~ t+ 24mσ0

(
z − u t+ 1

2
g t2

) ]
64m2 σ2

G σ
2
0

,

E4 =
π ~ t

[
π ~ t+ 8mσ0

(
z − u t+ 1

2
g t2

) ]
64m2 σ2

G σ
2
0

,

E5 =
π ~ t

(
z − u t+ 1

2
g t2

)
2mσ2

G σ0

,

E6 =
E5

2
,

A1 =
π
[
− π ~ t+ 8mσ0

(
z − u t+ 1

2
g t2

) ]
32mσ2

G

,

A2 =
π
[
π ~ t+ 8mσ0

(
z − u t+ 1

2
g t2

) ]
32mσ2

G

,

A3 =
π σ0

(
z − u t+ 1

2
g t2

)
2σ2

G

,

and

σG = | st | = σ0

(
1 +

~2 t2

4m2 σ4
0

) 1
2

(2.8)

is the spreading of the Gaussian wave packet. The probability density is explicitly

mass dependent. Here, the spreading of the wave packet is given by

σNG =

√
λ(0) + λ(2) α2 + λ(4) α4

4mσ0

[
2 e

π2

8 + α2
(
e
π2

8 − 1
)] , (2.9)

where

λ(0) = 64 e
π2

4 m2 σ2
0 σ

2
G ,

λ(2) = 8 e
π2

8 π2m2 σ4
0

(
1− 2 e

π2

16

)
+ 64 e

π2

8 m2 σ2
0 σ

2
G

(
e
π2

8 − 1
)

+ 2 e
π2

4 π2 ~2 t2 ,

λ(4) =
(
e
π2

8 − 1
) [

16m2 σ2
0 σ

2
G

(
e
π2

8 − 1
)

+ 4 π2m2 σ4
0 + e

π2

8 π2 ~2 t2
]
, (2.10)
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which is also mass dependent. From Fig. 2.1, we can see that for large masses,

σNG becomes almost constant with α. For a particular value of α, σNG decreases

with increasing value of mass m.

Figure 2.1: The variation of the width of the wave packet with α for different values

of m (in a.m.u.). We take σ0 = 10−3 cm, t = 1 sec and u = 103 cm s−1.

Using the time evolved wave function ψ(z, t), the expressions for expectation value

of position z and momentum p are calculated and are given by

〈 z 〉 =
π α σ0

2 + α2
(

1− e− π2

8

) e−π232 + u t− 1

2
g t2 ,

〈 p 〉 = m (u− g t ) . (2.11)

Here, 〈 z 〉 is α-dependent but mass independent. The value of zpeak is obtained

from the numerical solution of the equation d|ψ|2
dz

= 0, for which |ψ|2 is maximum.

In Table 2.1 and Table 2.2, it is shown numerically how zpeak and 〈 z 〉 vary with

α for 0 ≤ α ≤ 1 and mass m respectively. It is clear that zpeak 6= 〈 z 〉 and zpeak

increases with α and mass m, whereas 〈 z 〉 increases with α only and remains

constant for all masses. Here, the difference between mean and peak occurs due

to the presence of the asymmetry of the wave packet. In the Gaussian limit (i.e.,

α→ 0), 〈 z 〉 = zpeak.

Fig. 2.2 shows the time variation of zpeak and 〈 z 〉 . Dotted curve shows the

motion of zpeak whereas the continuous curve shows the motion of 〈 z 〉. As we take
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α zpeak 〈 z 〉
in cm in cm

0 38.59999999999815 38.599999999999910
0.1 38.61540633397262 38.611498366598200
0.2 38.62925626009014 38.622755653868810
0.3 38.64090000000000 38.633500000000000
0.4 38.65026513575232 38.643679695976970
0.5 38.65786585282045 38.652999876917650
0.6 38.66400000000000 38.661400000000000
0.7 38.66910000000000 38.668800000000000
0.8 38.67337906376510 38.675246198243485
0.9 38.67696171641449 38.680689435211890
1.0 38.68002216630916 38.685197660661515

Table 2.1: The variation of 〈 z 〉 and zpeak in cm with α for mass m = 10 a.m.u.
t = 2 sec and σ0 = 0.1 cm.

Mass (m) zpeak 〈 z 〉
in a.m.u. in cm in cm

30 38.657865898827980 38.65299987691765
60 38.657865903136155 38.65299987691765
90 38.657865903934166 38.65299987691765
120 38.657865904213070 38.65299987691765
150 38.657865904342295 38.65299987691765

Table 2.2: The variation of 〈 z 〉 and zpeak in cm with mass m in a.m.u. for α = 0.5,
t = 2 sec and σ0 = 0.1 cm.

σ0 = 10−7 cm, the α-dependence of 〈 z 〉 and zpeak becomes vanishingly small. So,

this α-dependence can not be shown graphically. As a result, the curves for zpeak

and 〈 z 〉 coincide totally in this graph.
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Figure 2.2: The variation of zpeak and 〈 z 〉 with time t. We take σ0 = 10−7 cm,

u = 103 cm s−1, m = 50 a.m.u. and α = 0.5.

2.2 Quantum mechanics in terms of classical con-

cepts

When a wave packet satisfies Ehrenfest’s theorem and classical Liouville’s equation

using Wigner distribution, then one can conclude that the dynamics of 〈z〉 is like

a classical point particle.

2.2.1 Ehrenfest’s theorem

According to Ehrenfest’s theorem, the expectation value of quantum mechanical

operators obey classical laws of motion, the instances of which are given below

d〈 z 〉
dt

=
〈 p 〉
m

,

d〈 p 〉
dt

=

〈
−∂V
∂z

〉
. (2.12)

From Eq. (2.11), it is possible to check that Ehrenfest’s theorem is satisfied for

our non-Gaussian wave packet.
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2.2.2 Wigner distribution function

If a full classical description is to emerge from quantum mechanics, we must be

able to describe quantum systems in phase-space. To observe the expression of 〈z〉
in the classical limit, we use the Wigner distribution function [Ford and O’Connell,

2002; Robinett, Doncheski, and Bassett, 2005; Wigner, 1932], which is one of the

important phase space distributions.

From the non-Gaussian wave function ψ(z, t) (Eq. (2.6)), we have calculated the

Wigner distribution function Dw(z, p, t) as

Dw(z, p, t) =
1

π ~

∫ ∞

−∞
ψ∗(z + y, t) ψ(z − y, t) e

2 i p y
~ dy , (2.13)

the marginals of which yield the correct quantum probabilities for position and

momentum separately. Dw(z, p, t) satisfies the classical Liouville’s equation [Das

and Sengupta, 2002] given by

∂Dw(z, p, t)

∂t
+ ż

∂Dw(z, p, t)

∂z
+ ṗ

∂Dw(z, p, t)

∂p
= 0 . (2.14)

Here, H = p2/2m+mgz is the Hamiltonian of the system and from Hamilton’s

equation of motion, we get

ż =
∂H

∂p
= p/m ,

ṗ = − ∂H
∂z

= −mg .

The corresponding position distribution function is given by

ρC(z, t) =

∫ ∞

−∞
Dw(z, p, t) dp . (2.15)

So, the expression for the average value of z using Wigner distribution function in

the classical limit is given by

〈 z 〉 =

∫ ∞
−∞ z ρC(z, t) dz∫ ∞
−∞ ρC(z, t) dz

=
π α σ0

2 + α2
(

1− e−π
2

8

) e−π232 + u t− 1

2
g t2

≡ z0 + u t− 1

2
g t2 , (2.16)
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Figure 2.3: The variation of probability P1(m) with mass (in a.m.u.) for different

constant values of α. We take u = 103 cm s−1, σ0 = 10−3 cm and ε = σ0.

which is exactly equal to the quantum mechanical expectation value of z [Chowd-

hury et al., 2012].

2.3 Position detection probabilities

Now, we consider an ensemble of quantum particles projected upwards against

gravity with a given initial mean position and mean velocity. Classically, the

particle moving upwards from the reference point at z = 0 reaches the maximum

height z = zmax = u t1− 1
2
g t21 at time t1 = u/g and returns to its initial projection

point at z = 0 at time t2 = 2u/g. Let, P1(m) and P2(m) be the probabilities

of finding the particles within a very narrow detector region (− ε to + ε) around

zmax and around z = 0 respectively, and are given by

P1(m) =

∫ zmax+ε

zmax−ε
|ψ(z, t1) |2 dz ,

P2(m) =

∫ +ε

−ε
|ψ(z, t2) |2 dz . (2.17)

From both the Fig. 2.3 and Fig. 2.4, it can be seen that both the probabilities

P1(m) and P2(m) show the violation of WEQ [Chowdhury et al., 2012] through
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Figure 2.4: The variation of probability P2(m) with mass (in a.m.u.) for different

constant values of α. We take u = 103 cm s−1, σ0 = 10−3 cm and ε = σ0.

their mass dependence for smaller masses using an initial non-Gaussian wave

packet. This effect of mass dependence of the probabilities occur essentially as

the spreading of the wave packet under linear gravitational potential depends on

the mass of the particles. These probabilities become saturated in the limit of large

mass. Again, it is seen that both the probabilities decrease for a particular value

of m but the violation increases with the non-Gaussian parameter α, signifying a

stronger violation of the weak equivalence principle.

2.4 Mean arrival time

Next, we consider quantum particles falling freely from the initial position at z = 0

under gravity with the initial state given by the Eq. (2.1) and with the initial

velocity u = 0. Using the probability current approach [Dumont and Marchioro,

1993; Leavens, 1993], the mean arrival time of the particles to reach a detector

location at z = Z is given by

τ̄ =

∫ ∞
0
| J(z = Z, t) | t dt∫ ∞

0
| J(z = Z, t) | dt

, (2.18)
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where J(z, t) is the quantum probability current density. J(z, t) can be negative, so

we take the modulus sign here. From Eq. (2.18), it can be seen that the integral of

the denominator converges whereas the integral of the numerator diverges formally.

To converge the numerator, among the available several techniques [Damborenea,

Egusquiza, and Muga, 2002; Hahne, 2003] here we use the simple technique of

getting a cut-off at t = T in the upper limit of the time integral with T =√
2 ( |Z |+ 3σT )/g. σT is the width of the wave packet at time T . Thus, our

calculations of the arrival time are valid upto the 3σT level of spread in the wave

function.

We have calculated J(z, t) with the initial non-Gaussian position distribution as

J(z, t) =
~
m
= (ψ∗∇ψ)

= N2 eE1

32m2 σ0 σ3
G

(
η(0) + α η(1) + α2 η(2)

)
, (2.19)

where

η(0) = 8 eE2

[
~2 t

(
z − 1

2
g t2
)

+ 4m2 σ4
0 (u− g t)

]
,

η(1) = η(0) e−E2
(
eE3 sinA1 + eE4 sinA2

)
− 2π ~2 t σ0

(
eE3 cosA1 + eE4 cosA2

)
+ 4πm ~σ3

0

(
eE3 sinA1 − eE4 sinA2

)
,

η(2) =

[
2 ~2 t

(
z − 1

2
g t2
)

+ 8m2 σ4
0 (u− g t)

]
(1 + eE5 − 2 eE6 cosA3)

− 2π ~2 t σ0 e
E6 sinA3 + 2πm ~σ3

0 (eE5 − 1) ,

and where the Ei’s are defined below Eq. (2.7).

τ̄ is also mass dependent through the explicit mass dependence of J(z, t). From

Fig. 2.5, it is clear that for smaller masses τ̄ is mass dependent. Fig. 2.6 shows

that for large masses, τ̄ becomes almost constant with α. For a particular value

of α, τ̄ decreases with increasing value of mass m. This mass-dependence of the

mean arrival time gradually vanishes as the mass is increased. Thus, compatibility

with the equivalence principle emerges in the limit of large mass, or classical limit

[Chowdhury et al., 2012]. For a particular value of mass, τ̄ increases with α.

The increment of τ̄ with α from the result of Gaussian case (i.e., with α = 0)

signifies the stronger violation of WEQ [Chowdhury et al., 2012]. A non-Gaussian

wave packet can exhibit non-classical features in a mass range where its Gaussian

counterpart behaves classically.
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Figure 2.5: The variation of mean arrival time with mass (in a.m.u.) for different

constant values of α. We take σ0 = 10−6 cm, Z = −1 cm and u = 0.

Figure 2.6: The variation of mean arrival time with α for different constant values

of m (in a.m.u.).We take σ0 = 10−6 cm, Z = −1 cm and u = 0.
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2.5 Bohmian interpretation

In the Bohmian model of quantum mechanics [Bohm, 1952, 1953], each individual

particle is assumed to have a definite position, irrespective of any measurement.

The pre-measured value of position is revealed when an actual measurement is

done. If each of an ensemble of particles have the same wave function ψ, which

evolves with time according to the Schrödinger equation, these ontological posi-

tions are distributed according to the probability density ρ = |ψ|2. If v is the

Bohmian velocity of the particle and J is the probability current density, then

the equation of motion of any individual particle is determined by the guidance

equation v = J/ρ. Solving the guidance equation, one gets the trajectory of the

particle.

The violation of WEQ arises as a consequence of the spread of wave packets, the

magnitude of which itself depends on the mass. In order to illustrate this effect we

present an analysis in terms of Bohmian trajectories in the free fall case. Within

the context of Bohmian interpretation of quantum mechanics [Bohm, 1952, 1953],

each individual particle is assumed to have a definite position, irrespective of any

measurement. The equation of motion of the particle is,

m~̈x = −∇ (V +Q)| ~x=~x(t) , (2.20)

where Q = − ~2
2m

∇2√ρ
√
ρ

is called ‘quantum potential energy’ and it is explicitly

mass-dependent and ~x(t) determines the path of the particle. In the gravitational

potential V = mgz, the quantum version of Newton’s second law is given by

z̈ = g − 1

m

∂Q

∂z

∣∣∣∣
z=z(t)

. (2.21)

According to Holland [Holland, 1993], due to the intervention of the mass-dependent

quantum force term, WEQ is violated. The arrival-time problem is unambiguously

solved in the Bohmian mechanics, where for an arbitrary scattering potential V (~x),

the arrival-time distribution of particles [Leavens, 1993, 1996, 1998, 2002] that ac-

tually reach ~x = ~X, is given by the modulus of the probability current density,

i.e., | J( ~X, T ) |.

The effect of nonlocal nature and the mass-dependence of the quantum potential Q

on the violation of WEQ is manifested in a similar way like the violation observed



Chapter 2. Violation of Weak Equivalence Principle in quantum mechanics 43

0 5 10 15 20 25 30
-6

-5

-4

-3

-2

-1

0

0 1 2 3
-300

-200

-100

0

100

200

0 5 10 15 20 25 30
t (mm)

-5

-4

-3

-2

-1

0x 
(m

m
)

0 1 2 3
t (mm)

-400

-200

0

200

400 x 
(µ

m
)

α = 0

 α = 1

m = 50 amu

m = 2000 amu

Figure 2.7: A selection of Bohmian trajectories for u = 0 (free fall) and σ0 =

10−6 cm. In the left column tunable parameter α has the fixed value α = 0.5 and in the
right one mass is constant and equal to m = 100 amu. The solid black trajectory starts
at 〈 z 〉(0) , the dashed blue one at 〈 z 〉(0)−2σ0 and the dotted red one at 〈 z 〉(0)+2σ0.

due to the spread of the wave packet. We have computed a set of Bohmian

trajectories corresponding to the free fall of our non-Gaussian wave packet with

the tunable parameter α. Fig. 2.7 shows a selection of Bohmian trajectories

exhibiting their mass and α dependent spread. One can see that for small mass,

the trajectories with initial positions on the left and right of the center of the

wave packet (mean 〈 z 〉) spread out with time evolution, indicating violation of

WEQ. The magnitude of spread increases with α, signifying stronger violation of

WEQ [Chowdhury et al., 2012] with increased departure from Gaussianity. The

spread of the trajectories decreases as mass is increased, leading to the emergence

of WEQ in the classical limit.
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2.6 Summary

To summarize, in this chapter we have studied the violation of the gravitational

weak equivalence principle in quantum mechanics using a non-Gaussian wave

packet. The wave packet is constructed in such a way that its departure from

Gaussianity is represented by a continuous and tunable parameter α. The asym-

metry of the wave packet entails a difference between its mean and peak, and

causes the peak to evolve differently from a classical point particle, whereas the

mean evolves like a classical point particle modulo a constant depending upon

the parameter α. Such a result is consistent with the Ehrenfest therorem, as we

have shown, and re-confirmed using the Wigner distribution. The correspondence

with the results following from a Gaussian wave packet is achieved in the limit of

α→ 0.

First, we have shown the violation of the weak equivalence principle through the

dependence on mass of the position detection probabilities of an ensemble of par-

ticles projected upwards against gravity. We next compute the mean arrival time

of freely falling wave packets through the probability current distribution corre-

sponding to the non-Gaussian wave packet. The mass dependence of the arrival

time again causes the violation of WEQ. In both the cases, the magnitude of vi-

olation increases with the increase of the non-Gaussian parameter α, signifying

stronger violation of WEQ with larger deviation from Gaussianity. It is observed

that in the limit of large mass the classical value for the mean arrival time is ap-

proached, thereby indicating the emergence of the WEQ in the classical limit. In

this context, it is worthwhile mentioning that though our work follows as a natu-

ral consequence of quantum mechanics or quantum theory in the non-relativistic

limit, it does not imply a violation of general covariance in the relativistic domain.

An interesting connection between the non-relativistic limit of quantum theory

and the principle of equivalence has recently been discussed [Padmanabhan and

Padmanabhan, 2011]. Finally, a computation of Bohmian trajectories further es-

tablishes the stronger violation of the WEQ by a non-Gaussian wave packet.
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Violation of Bell’s inequality for

classical beam

Vortex beams provide another interesting example of non-Gaussian character. Vor-

tex beams can encode large amounts of information due to the absence of an upper

limit on their topological charge [Nye and Berry, 1974], a feature which is endowed

due to the twisting of light like a corkscrew around its axis of propagation. This

feature associated with a corresponding number of allowed states have lead their

applicability in quantum information processing tasks [Molina-Terriza, Torres, and

Torner, 2007]. Vortex beams have interesting coherence properties [Agarwal and

Banerji, 2002; Simon and Agarwal, 2000], and such beams with large values of

orbital angular momenta have been experimentally realized both in the optical

domain [Fickler et al., 2012] as well as using electrons [McMorran, 2011; Verbeeck,

Tian, and Schattschneider, 2010].

Due to the presence of the mathematical isomorphism of correlations between

discrete degrees of freedom in classical optics with quantum entanglement in two-

qubit systems, a common framework to study correlations in discretized degrees

of freedom in both classical and quantum optics has been proposed [Aiello and

Woerdman, 2005; Ghose and Mukherjee, 2014; Qian, Broadbent, and Eberly, 2014;

Qian and Eberly, 2011; Simon et al., 2010; Spreeuw, 1998]. Schmidt decomposition

has been known much before the advent of quantum mechanics and it plays a

key role in defining quantum entanglement, when one uses the wave function.

In classical theory the Schmidt decomposition is in terms of the electromagnetic

fields, and the coherence function is directly related to the Schmidt spectrum

45
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[Jha, Agarwal, and Boyd, 2011]. The well known classical Laguerre-Gaussian

(LG) beams that have optical vortices with topological singularities [Agarwal,

2013] have a Schmidt decomposition [Agarwal and Banerji, 2002]. Therefore, one

would expect that they may have the capability of showing many of the features

developed within the context of quantum mechanics.

After the derivation of Bell’s inequality, the violation of Bell’s inequality in quan-

tum mechanics has been shown in several subsequent experiments [Aspect, Dal-

ibard, and Roger, 1982; Aspect, Grangier, and Roger, 1981, 1982]. The derivation

of the inequality does not involve the concept of quantum mechanics. Recently,

Bell’s measure, which is the amount of violation of a Bell inequality [Bell, 1964;

Clauser et al., 1969], has been suggested as a measure to quantify the magnitude

of correlation between different degrees of freedom of a classical beam through

joint measurements [Borges et al., 2010; Kagalwala et al., 2013]. Now, we want

to demonstrate the coherence properties of LG beams through the violations of

Bell’s inequality for continuous variables.

3.1 Schmidt decomposition and classical fields

Let us consider, Alice and Bob possess two particles A and B respectively. In

quantum mechanics, there is a possibility that these particles are entangled. This

is a consequence of the superposition principle, which allows us to write the two

particle wave function ψ (x, y) as a superposition of the product of the single

particle wave functions Φi (x) and χi (y),

ψ (x, y) =
∑
i

ci Φi (x) χi (y) , (3.1)

where ci’s are some constants. As long as there are at least two nonzero ci’s, the

above state will remain nonseparable, i.e., entangled. In fact, the state (3.1) is in

the form of a Schmidt decomposition which has been extensively used in studying

quantum entanglement [Grobe, Rzazewski, and Eberly, 1994; Law, Walmsley, and

Eberly, 2000; Sperling and Vogel, 2011]. A way to study entanglement is to study

the nonpositivity of the quasiprobabilities [Sperling and Vogel, 2009].

Presently, we consider the classical fields with topological singularities. For these

classical fields, there is a close parallel to the development in quantum mechanics.
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It is well known that in paraxial optics, the beam propagation in free space is

described by [Saleh and Teich, 2007]

E (~r, t) = ε (x, y, z) ei ω z /c− i ω t , (3.2)

i
∂ε

∂z
= − λc

2

(
∂2

∂x2
+

∂2

∂y2

)
ε , (3.3)

with λc = λ/2π, 2 π/λ = ω/c. The Eq.(3.3) has exactly the same form as the

Schrodinger equation for a free particle in two dimensions with t → z , ψ →
ε , ~ → λc . Thus, an optical beam in two dimensions can be expressed as a

superposition of fundamental solutions of Eq.(3.3). For an example, we consider

the classical Laguerre-Gaussian (LG) beams.

3.2 Classical Laguerre-Gaussian (LG) beams

The well known LG beam in two dimensions is a physically realizable field dis-

tribution containing optical vortices with topological singularities and is given by

[Agarwal, 2013]

Φnm (ρ, θ) = ei (n−m) θ e− ρ
2/w2

(−1) min (n,m)

(
ρ
√

2

w

)|n−m|

×
√

2

π n!m!w2
L
|n−m|
min (n,m)

(
2 ρ2

w2

)
[ min (n,m)]! , (3.4)

where ρ and θ are the polar coordinates in two dimensions ρ =
√
x2 + y2, tan θ =

y/x. This is a normalized wave function as
∫
|Φnm(ρ, θ) |2 dx dy = 1. Here, the

integers n,m representing the two modes of the beam satisfy 0 ≤ n,m ≤ ∞,

w is the beam waist, and Llp(x) is the generalized Laguerre polynomial. N =

n + m is called the order of the mode, l = n − m is the azimuthal index,

and p = min (n,m) is called the radial index. These LG beams can be written

as superpositions of Hermite-Gaussian (HG) beams [Beigersbergen et al., 1993;

Danakas and Aravind, 1992]

Φnm (ρ, θ) =
n+m∑
k=0

un+m−k,k (x, y)
f

(n,m)
k

k!
(
√
−1)k

√
k! (n+m− k)!

n!m! 2n+m
, (3.5)
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f
(n,m)
k =

dk

dtk
{(1− t)n (1 + t)m} | t=0 , (3.6)

and the HG beam is defined by

unm (x, y) =

√
2

π

(
1

2n+mw2 n!m!

)1/2

Hn

(√
2x

w

)
Hm

(√
2 y

w

)
e− (x2+y2)/w2

.

(3.7)

This wave function of HG beam is also normalized as
∫
|unm (x, y) |2 dx dy = 1.

The superposition (4.26) is like a Schmidt decomposition. In the special case

Φ 10 =
2√
π w2

(x+ i y) e− (x2+y2)/w2

,

Φ 01 =
2√
π w2

(x− i y) e− (x2+y2)/w2

. (3.8)

Motivated by the structural similarities between Eq.(3.1) for a quantum system

and Eq.(4.26) for optical beams, we examine the possibilities of violations of Bell

like inequalities for classical optical LG beams. For this, one needs to construct

some Bell-like inequalities for continuous variable systems. The approach of using

the Wigner function for demonstrating the violation of Bell inequalities for con-

tinuous variables in quantum optics has gained popularity in recent years [Jeong

et al., 2003; Olivares and Paris, 2004; Zhang and Mukamel, 2007; Zhang et al.,

2007]. Therefore, in the present work, we shall use the framework of obtaining

Bell inequalities for continuous variable systems using the Wigner function.

3.3 Wigner function

The entanglement between continuous variable quantum systems (i.e., non-“qubit”

quantum systems) is usually characterized in terms of the quasiprobabilities. It is

well known that Wigner function is one of the important quasiprobabilities. For

example, Banaszek and Wodkiewicz [Banaszek and Wodkiewicz, 1998, 1999] have

shown that the Wigner function, expressed as an expectation value of a product of

displaced parity operators, can be used to derive an analog of Bell inequalities in

continuous variable systems. There exists an analogy between the measurement of

spin-1/2 projectors and the parity operator, since the outcome of a measurement

of the latter is also dichotomic. The solid angle defining the direction of the spin
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in the former case, is replaced by the coherent displacement describing the shift

in phase space in the latter. For a radiation field with two modes a and b, the

Wigner function can be written as

W (α, β) =
4

π2

〈
D1(α) (−1) a

†aD†1(α) ⊗ D2(β) (−1) b
†bD†2(β)

〉
, (3.9)

where D(α)
(

= exp {a† α− aα ∗}
)

is the displacement operator for the coherent

displacement α, and
[
a, a†

]
= 1 =

[
b, b†

]
are the commutation relations.

3.4 Bell inequalities for continuous variable

systems

In local hidden variable theories, the correlations between the outcomes of mea-

surements on two spatially separated systems possessed by Alice and Bob with

detector settings labeled by a and b, respectively, may be written as a statistical

average over hidden variables τ , of the functions p (a, τ) = ± 1, and p (b, τ) = ± 1,

viz.

S (a,b) =

∫
dτ ρ (τ) p (a, τ) p (b, τ) , (3.10)

where ρ (τ) is a local and positive distribution of the hidden variables τ . Using

the choice of two different settings (a, a ′, b, b ′) on either side, the Bell-CHSH

inequality [Bell, 1964; Clauser et al., 1969], viz.

B ≡ |S (a,b) + S (a,b ′) + S (a ′,b)− S (a ′,b ′) | < 2 (3.11)

may be derived, which has been shown to be violated experimentally for quantum

systems with correlations in discrete variables [Aspect, Dalibard, and Roger, 1982;

Aspect, Grangier, and Roger, 1981, 1982]. A Bell inequality involving correlations

between the discrete variables of polarization and parity has been shown to be

violated in classical optics [Borges et al., 2010; Kagalwala et al., 2013].

For a radiation field with two modes a and b, we replace S(a,b) in Eq.(3.10) by

the Wigner function given by the Eq.(3.9). Thus, for continuous variable systems,
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one can test the violations of the inequality

B =
π2

4
|W (α, β) +W (α, β ′) +W (α ′, β)−W (α ′, β ′) | < 2 . (3.12)

Here, α’s and β’s are coherent displacements. We shall use the inequality (3.12)

for classical light beams with topological singularities to find the features of quan-

tum inspired optical entanglement. For this, in the next section we examine the

violation of the Bell’s inequality (3.12) for classical LG beams. Moreover, the

Schmidt decomposition for LG beams contains many more terms for larger values

of the orbital angular momentum [Agarwal and Banerji, 2002], and hence, one can

expect a rise in the Bell measure for higher orbital angular momentum.

3.5 Violation of Bell’s inequality through the

Wigner function

We now apply the above framework to the case of LG beams. Defining the Wigner

function as the Fourier transform of the electric field amplitude E, viz.

W (X,P) =
1

π2

∫
d2ξ e2 iP ξ 〈E ∗(X− ξ) E (X− ξ) 〉 , (3.13)

has facilitated the experimental measurement of the Wigner function in terms of

the two-point field correlations [Iaconis and Walmsley, 1996; Zhang and Mukamel,

2007]. The Wigner function has been calculated for LG beams [Simon and Agar-

wal, 2000] :

Wnm(x, px; y, py) = (−1)n+m (π)−2 Ln [ 4 (Q0 +Q2)]

×Lm [ 4 (Q0 −Q2)] exp (− 4Q0) ,

(3.14)

where the expressions for Q0 and Q2 are given as follows :

Q0 =
1

2

[
x2 + y2

w2
+

w2

4λ2
c

( p2
x + p2

y )

]
,

Q2 =
x py − y px

2λc
. (3.15)
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We shall make the following variable transformations,

x (y) → w√
2
X (Y ) , px (py) →

√
2λc
w

PX (PY ) , (3.16)

where {X, PX} and {Y, PY } are conjugate pairs of dimensionless quadratures.

With the above transformations, [x̂, p̂x] = i λc ; [ŷ, p̂y] = i λc becomes [X̂, P̂X ] =

i ; [Ŷ , P̂Y ] = i , and the operators P̂X and P̂Y are given by

P̂X = − i ∂

∂X
, P̂Y = − i ∂

∂Y
. (3.17)

The Wigner function is rewritten in terms of the scaled variables as

Wnm(X,PX ;Y, PY ) = (−1)n+m (π)−2 Ln [ 4 (Q0 +Q2)]

×Lm [ 4 (Q0 −Q2)] exp (− 4Q0) ,

Q0 =
1

4

[
X2 + Y 2 + P 2

X + P 2
Y

]
,

Q2 =
X PY − Y PX

2
, (3.18)

with the normalization∫
Wnm(X,PX ;Y, PY ) dX dY dPX dPY = 1 . (3.19)

For further proceedings of this work, we shall use this Wigner function of dimen-

sionless quadratures. In terms of the Wigner function for the LG beam, we would

search violations of the analog of Eq.(3.12) given by

B = Πnm(X = 0, PX = 0;Y = 0, PY = 0) + Πnm(X, 0; 0, 0)

+ Πnm(0, 0; 0, PY )− Πnm(X, 0; 0, PY ) < 2 , (3.20)

where the Wigner transform Πnm [Zhang et al., 2007] associated with the Wigner

function Wnm(X,PX ;Y, PY ) is given by

Πnm(X,PX ;Y, PY ) = (π)2 Wnm(X,PX ;Y, PY ) . (3.21)

We again emphasize that since the expression for correlations in joint measure-

ment of separated observables given by Eq.(3.10) is not exclusive to the quantum

domain, the above formulation of Bell inequalities through the Wigner function



Chapter 3. Violation of Bell’s inequality for classical beam 52

may also be applied in classical theory.

3.5.1 Bell violation for n = 1, m = 0

First, we consider the state Φ 10(x, y) (given by Eq. (4.29)). In terms of the

dimensionless variables (X, Y ), Φ 10(X, Y ) can be written as

Φ 10(X, Y ) =
1√
π

(X + i Y ) exp

[
− X

2 + Y 2

2

]
. (3.22)

The corresponding normalized Wigner function is given by

W 10(X,PX ;Y, PY ) = e−P
2
X−P

2
Y −X

2−Y 2 [ (PX − Y )2 + (PY +X)2 − 1 ]

π2
.

(3.23)

In order to obtain the Bell sum, we consider the Wigner transform [Zhang et al.,

2007] Π 10(X,PX ;Y, PY ) = π2W 10(X,PX ;Y, PY ). The two measurement settings

on one side are chosen to be {X1 = 0, PX1 = 0} or {X2 = X,PX2 = 0}, and the

corresponding settings on the other side are {Y1 = 0, PY1 = 0} or {Y2 = 0, PY2 =

PY } [Zhang et al., 2007]. Hence, the Bell sum associated with Π 10(X,PX ;Y, PY )

for the bimodal state Φ 10(X, Y ) is given by

B = Π 10(X = 0, PX = 0;Y = 0, PY = 0)

+ Π 10(X, 0; 0, 0) + Π 10(0, 0; 0, PY )− Π 10(X, 0; 0, PY )

= e−P
2
Y
(
P 2
Y − 1

)
+ e−X

2 (
X2 − 1

)
− e−P 2

Y −X
2 [

(PY +X)2 − 1
]
− 1 . (3.24)

Upon maximization of the Bell sum B with respect to parameters X and PY , we

obtain the maximum Bell violation, |Bmax| ∼ 2.17 which occurs for the choices of

parameters X ∼ 0.45, PY ∼ 0.45 [Chowdhury, Majumdar, and Agarwal, 2013]. If

one would like to compare this result with the result obtained in quantum mechan-

ics, then the two-mode squeezed vacuum state can be considered for continuous

variable systems. Because, this state gives the maximum Bell violation for any

measurement settings in CV quantum systems and the increasing violation with

the squeezing parameter reaches the maximum value 2
√

2 of quantum mechanics

for infinite squeezing. The maximum Bell violation through the Wigner function
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for this state using similar settings (Eq. (3.24)) is given by |Bmax|QM ∼ 2.19

[Banaszek and Wodkiewicz, 1998, 1999].

3.5.2 Bell violation for higher values of n, m

Next, we consider the above analysis for higher values of n and m for the LG

field amplitude. We use Eq. (4.31) and Eq. (3.21) to calculate the Bell sum. In

the Fig. 3.1, we plot |B| against X and PY for three different values of n keeping

m = 0. From this figure, it is clear that the maximum violation of the Bell’s

inequality increases with higher orbital angular momentum [Chowdhury, Majum-

dar, and Agarwal, 2013]. The increase of Bell violations with n is analogous to the

enhancement of nonlocality in quantum mechanics for many particle Greenberger-

Horne-Zeilinger states or for higher spins [Gisin and Peres, 1992; Home and Ma-

jumdar, 1995; Mermin, 1990; Roy and Singh, 1991], an effect which may also be

manifested in physical situations [Majumdar and Nayak, 2001]. Here, we have

been able to demonstrate such an effect within the realm of classical theory.

Figure 3.1: The plot shows the variation of the Bell sum |B| with respect to dimen-
sionless variables X and PY for different values of n, where m = 0. The indigo (right)
curve is for n = 1, the green (centre) curve is for n = 5, and the magenta (left) curve

is for n = 30.

For the purpose of experimental realization of the violation of Bell inequalities in

classical optical systems with topological singularities, it may be worthwhile to
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n |Bmax| n |Bmax|
0 2.0 7 2.4833
1 2.23868 8 2.49236
2 2.34874 9 2.49964
3 2.40256 10 2.50561
4 2.43475 16 2.52683
5 2.45626 20 2.5343
6 2.47168 30 2.5446

Table 3.1: Maximum Violation of Bell-CHSH inequality by LG beam for different
values of n keeping m=0.

employ techniques for enhancing the Bell violation. This is indeed possible using

several approaches, and we would here like to point out two such schemes.

First, it has been observed [Jeong et al., 2003; Olivares and Paris, 2004] that the

Bell violation may be further optimized by considering more general choice of

settings than those used in the inequality (3.20), i.e.,

B = Πn,m(X1, PX1 ;Y1, PY1) + Πn,m(X2, PX2 ;Y1, PY1)

+ Πn,m(X1, PX1 ;Y2, PY2)− Πn,m(X2, PX2 ;Y2, PY2) . (3.25)

Considering the n = 1,m = 0 case, and maximizing the Bell violation with respect

to the parameters X1, PX1 , X2, PX2 , Y1, PY1 , Y2, PY2 , one obtains the maximum Bell

violation, |Bmax| = 2.24 [Chowdhury, Majumdar, and Agarwal, 2013] which ex-

ceeds the maximum violation obtained through our earlier choice of settings given

by the Eq. (3.24), and occurs for the choices of parameters X1 ∼ −0.07, PX1 ∼
0.05, X2 ∼ 0.4, PX2 ∼ −0.26, Y1 ∼ −0.05, PY1 ∼ −0.07, Y2 ∼ 0.26, PY2 ∼ 0.4.

Similarly, a corresponding increase of the Bell sum occurs for higher values of n

too, which has demonstrated in the Table 3.1 [Chowdhury, Majumdar, and Agar-

wal, 2013]. For n → ∞, the value of |Bmax| approaches to the value 2
√

2 of

quantum mechanics.

Secondly, another method of obtaining a higher violation of Bell inequalities may

be through elliptical transformation of LG beams. Such transformations are easily

achievable in practice [Bandres and Gutierrez-Vega, 2008; Verrier et al., 2008], viz.
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a Gaussian elliptical beam of the sort

Φ =
1√
π

exp

[
− X

2 + Y 2

2
cosh(2t) ± X Y sinh(2t)

]
(3.26)

is observed to increase the Bell violation for the n = 1,m = 0 case to 2.32.

3.6 Nonlocal correlations and Bell violations in

vortex beams

The violation of the Bell’s inequality which we have shown previously, is obtained

as a result of the presence of nonvanishing nonlocal correlations between two sep-

arate modes or variables in separate directions of the type 〈X,PY 〉 6= 0, which

originates due to the finite and nonvanishing wavelength λc, resulting in the lack

of precision in the simultaneous measurement of two observables corresponding

to two different modes of light. In wave optics, the wavelength λc plays a role

analogous to the Planck’s constant ~ in quantum mechanics. Here, λc → 0 leads

to the limit of geometrical optics, again analogously to the quantum case where

~→ 0 gives the classical limit.

Let us now consider the quadrature phase components of two correlated and spa-

tially separated light fields, Eα = C
[
α̂ e− i ωα t + α̂† ei ωα t

]
(where, α ∈ {a, b},

are the bosonic operators for two different modes, ωα is the frequency, and C is

a constant incorporating spatial factors taken to be equal for each mode). The

quadrature amplitudes associated with these fields are given by

X̂θ =
â e− i θ + â† ei θ√

2
, Ŷφ =

b̂ e− i φ + b̂† ei φ√
2

, (3.27)

where

â =
X + i Px√

2
, â† =

X − i Px√
2

,

b̂ =
Y + i Py√

2
, b̂† =

Y − i Py√
2

, (3.28)

and the commutation relations of the bosonic operators are given by
[
â, â†

]
=

1 = [b̂, b̂†]. Now, using the Eq. (4.3) the expression for the quadratures can be
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rewritten as

X̂θ = cos[θ] X̂ + sin[θ] P̂x , Ŷφ = cos[φ] Ŷ + sin[φ] P̂y . (3.29)

The correlations between the quadrature amplitudes X̂θ and Ŷφ are captured by

the correlation coefficient, Cθ,φ defined as [Ou et al., 1992; Reid, 1989; Tara and

Agarwal, 1994]

Cθ,φ =
〈X̂θ Ŷφ〉√
〈X̂2

θ 〉 〈Ŷ 2
φ 〉
, (3.30)

where 〈X̂θ〉 = 0 = 〈Ŷφ〉. The correlation is perfect for some values of θ and φ,

if |Cθ,φ| = 1. Clearly, |Cθ,φ| = 0 for uncorrelated variables. For the case of LG

beams with n = 1,m = 0, the correlation function is given by

Cθ,φ(Φ 10(X, Y )) =
1

2
sin [φ− θ] . (3.31)

Here, the maximum correlation strength |C max
θ,φ | = 1

2
occurs for φ − θ = kπ

2

(where k is an odd integer). For arbitrary values of n and m, it can be shown

[Chowdhury, Majumdar, and Agarwal, 2013] that the expression for the maximum

correlation function is given by

C max
θ,φ =

〈X̂ P̂Y 〉√
〈X̂2〉 〈P̂ 2

Y 〉
= − 〈P̂X Ŷ 〉√

〈P̂ 2
X〉 〈Ŷ 2〉

. (3.32)

In Fig. 3.2, we provide a plot of the maximum correlation function for several

values of n and m. The strength of the correlations increases with n (m) [Chowd-

hury, Majumdar, and Agarwal, 2013], asymptotically reaching the limit of perfect

correlations as n becomes very large, as is expected to be the case due to the pres-

ence of more and more terms in the Schmidt decomposition of LG beams [Agarwal

and Banerji, 2002]. This feature thus further corroborates our earlier results of an

increase in Bell violations for larger orbital angular momentum of LG beams.
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Figure 3.2: The plot shows the values of the maximum correlation function C max
θ,φ

for various values of n, where m = 0. Similar results are obtained by choosing n = 0
and varying m. Note that Cθ,φ = 0 for n = m = 0.

3.7 Conclusions

In this chapter, we have presented a study of nonlocal correlations in classical

optical beams with topological singularities. These nonlocal correlations between

two different light modes of LG beams are manifested through the violation of a

Bell inequality using the Wigner function of this system. Here, we need to use the

Wigner function as we are dealing with two continuous variables. The magnitude

of the violation of the Bell inequality is shown to increase with the value of orbital

angular momentum of the beam, an effect that is analogous to the enhancement

of nonlocality for many particle Greenberger-Horne-Zeilinger states or for higher

spins [Gisin and Peres, 1992; Home and Majumdar, 1995; Mermin, 1990; Roy and

Singh, 1991]. We have also shown that the maximum of the correlation function

between two correlated and spatially separated light modes increases with the

orbital angular momentum of the beam. This feature thus further supports our

earlier result of increase in Bell violations for larger orbital angular momentum of

classical LG beams. Therefore, quantum nonlocality is reinterpreted in classical

theory, where a violation of Bell’s inequality corresponding to a particular light

beam possessing classical entanglement signifies the impossibility of constructing

such a beam using other beams with uncoupled degrees of freedom.



Chapter 3. Violation of Bell’s inequality for classical beam 58

Our predicted values of the correlation function as a function of the beam parame-

ters should be not difficult to realize experimentally, since production of such vor-

tex beams has been achieved not only in the optical domain [Fickler et al., 2012;

Singh et al., 2006], but recently has also been implemented for electron beams

[McMorran, 2011; Verbeeck, Tian, and Schattschneider, 2010] having far-reaching

applications. We conclude by noting that the feasibility of direct measurement

of the two-point correlation function through shear Sagnac interferometry [Iaconis

and Walmsley, 1996; Singh et al., 2006; Zhang and Mukamel, 2007] is a potentially

promising avenue for experimental verification of our predicted Bell violation and

its enhancement for vortex beams with higher angular momentum. We expect

that these results hold also for other types of beams with no azimuthal symme-

try. An example would be Bessel beams [Durnin, Miceli, Jr., and Eberly, 1987;

Garces-Chavez et al., 2002; Mitri, 2008] of higher order
[
Jl(ρ) ei l θ; l 6= 0

]
.



Chapter 4

Quantum steering for

non-Gaussian entangled states

The understanding of the precise nature of correlations that lead to the EPR para-

dox had to wait for a number of years beyond Bell’s derivation of his inequality,

and further advances in quantum information theory. In this direction, a testable

formulation of the EPR paradox was proposed by Reid [Reid, 1989] in the realm

of continuous variable systems using the famous position-momentum Heisenberg

uncertainty relation. To test the EPR paradox, Reid gave an inequality involving

products of inferred variances of incompatible observables [Drummond and Reid,

1990; Tara and Agarwal, 1994]. The realization of the EPR paradox was observed

in some subsequent experimental works [Ou et al., 1992]. For two mode squeezed

vacuum states, recently a much stronger violation of the Reid inequality has been

experimentally demonstrated [Steinlechner et al., 2013]. However, in systems with

correlations manifesting in higher than the second moment, the Reid formulation

generally fails to show occurrence of the EPR paradox, even though Bell nonlo-

cality may be exhibited [Chowdhury, Majumdar, and Agarwal, 2013; Walborn et

al., 2011].

After Reid’s formulation of EPR paradox, Wiseman et al. have proposed a more

direct manifestation of EPR-type correlations in terms of an information-theoretic

task [Cavalcanti et al., 2009; Wiseman, Jones, and Doherty, 2007]. Using similar

formulations for all the three types of correlations, they have shown that entangle-

ment is the weakest, Bell violation is the strongest form of correlation, and steering

59
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takes the intermediate position between them. These differences have been demon-

strated experimentally for mixed entangled states of two qubits [Saunders et al.,

2010]. The case of continuous variable states however poses an additional diffi-

culty, since there exist several pure entangled states, which do not display steering

through the Reid criterion based on variances of observables [Reid, 1989]. In order

to exploit higher order correlation in such states, Walborn et al. [Walborn et al.,

2011] proposed a new steering condition, which is derived using the more stronger

entropic uncertainty principle [Bialynicki-Birula and Mycielski, 1975]. The Reid

criterion can be seen to follow as a limiting case of the entropic steering relation

[Walborn et al., 2011]. Generalizations of entropic steering inequalities to the

case of symmetric steering [Schneeloch et al., 2013], loss-tolerant steering [Evans,

Cavalcanti, and Wiseman, 2013], as well as to the case of steering with quan-

tum memories [Schneeloch, Broadbent, and Howell, 2014] has also been proposed

recently.

EPR steering for Gaussian states has been studied extensively both theoretically

and experimentally. It is realized though that Gaussian states are a rather spe-

cial class of states, and there exist very common examples of states, such as the

superposition of two oscillators in Fock states that are far from Gaussian in na-

ture. The non-Gaussian states generally have a higher degree of entanglement

than the Gaussian states. Since the steering of correlated systems has started to

be studied only recently, it is important to understand the steering of systems with

non-Gaussian correlations. Recently, Walborn et al. Walborn et al. [2011] have

shown the steerability for a particular example of non-Gaussian state through the

entropic steering inequality. In this chapter, we shall consider several categories

of non-Gaussian states with the motivation of investigating EPR steering of such

states.

4.1 The EPR paradox and steering

Here, we consider two parties Alice and Bob, who possess systems A and B re-

spectively. Now, to understand the EPR paradox, we have to consider a bipartite

entangled state shared between the systems A and B. This state may be expressed
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in two different ways, as

|Ψ〉 =
∞∑
n=1

cn |ψn〉 |un〉 =
∞∑
n=1

dn |φn〉 |vn〉 , (4.1)

where {|un〉} and {|vn〉} are two orthonormal bases for one of the parties (say,

Alice). If Alice’s choice is to measure in the {|un〉} basis, then Bob’s system is

projected instantaneously into one of the states |ψn〉. Similarly, if Alice measures

in the {|vn〉} basis, she instantaneously projects Bob’s system into one of the states

|φn〉. This ability of Alice to affect Bob’s state through her choice of the measure-

ment basis was dubbed “steering” by Schrödinger [Schrödinger, 1935, 1936]. Since

there is no direct physical interaction between Alice and Bob, it is paradoxical

that the ensemble of |ψn〉’s is different from the ensemble of |φn〉’s.

The EPR paradox stems from the correlations between two noncommuting ob-

servables of a subsystem with those of the other subsystem, i.e., 〈x, py〉 6= 0, with

〈x〉 = 0 = 〈py〉 individually. In the original formulation of the paradox, cor-

relations between the measurement outcomes of positions and momenta for two

separated particles were considered. Due to the presence of correlations, the mea-

surement of the position of, say, the first particle leads one to infer the correlated

value of the position for the second particle (say, xinf). Now, if the momentum of

the second particle is measured giving the outcome, say p, the value of the prod-

uct of uncertainties (∆xinf)
2 (∆pinf)

2 may turn out to be less than that allowed

by the uncertainty principle, viz. (∆x)2 (∆p)2 ≥ 1, thus leading to the paradox.

In the following section, we shall try primarily to fix the setting for our work on

non-Gaussian entangled states.

4.2 The Reid inequality and its validation

The possibility of demonstrating the EPR paradox in the context of continuous

variable correlations was first proposed by Reid [Reid, 1989]. Such an idea has been

experimentally realized [Ou et al., 1992] through quadrature phase measurements

performed on the two output beams of a nondegenerate parametric amplifier.

This technique of demonstrating the product of variances of the inferred values of

correlated observables to be less than that allowed by the uncertainty principle, has

since gained popularity [Drummond and Reid, 1990; Tara and Agarwal, 1994], and
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has been employed recently for variables other than position and momentum, e.g.,

for correlations between optical and orbital angular momentum of light emitted

through spontaneous parametric down-conversion [Leach et al., 2010].

4.2.1 Formulation of the Reid inequality

Let us now consider the situation where the quadrature phase components of two

correlated and spatially separated light fields are measured. Here, we consider the

light fields like Eγ = C [ γ̂ e− i ωγ t + γ̂†ei ωγ t ], where γ ∈ {a, b} are the bosonic

operators for two different modes, ωγ is the frequency, and C is a constant incorpo-

rating spatial factors taken to be equal for each mode. The quadrature amplitudes

associated with these fields are given by

X̂θ =
â e−i θ + â†ei θ√

2
, Ŷφ =

b̂ e−i φ + b̂†ei φ√
2

, (4.2)

where

â =
X + i Px√

2
, â† =

X − i Px√
2

,

b̂ =
Y + i Py√

2
, b̂† =

Y − i Py√
2

. (4.3)

Here, the commutation relations of the bosonic operators are given by [ â, â† ] =

1 = [ b̂, b̂† ]. Now, using Eq. (4.3) the expression for the quadratures can be

rewritten as

X̂θ = cos[θ] X̂ + sin[θ] P̂x , Ŷφ = cos[φ] Ŷ + sin[φ] P̂y . (4.4)

The amplitudes, X̂θ and Ŷφ are correlated to each other. The correlations between

these quadrature amplitudes can be captured by the correlation coefficient, Cθ,φ.

The correlation coefficient is defined as [Drummond and Reid, 1990; Ou et al.,

1992; Reid, 1989; Tara and Agarwal, 1994]

Cθ,φ =
〈X̂θ Ŷφ〉√
〈X̂2

θ 〉 〈Ŷ 2
φ 〉
, (4.5)

where 〈X̂θ〉 = 0 = 〈Ŷφ〉. The correlation will be perfect, i.e., |Cθ,φ| = 1 for some

values of θ and φ. Clearly, for uncorrelated quadrature amplitudes |Cθ,φ| = 0.
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Due to the presence of correlations between the quadrature amplitudes X̂θ and

Ŷφ, the quadrature amplitude X̂θ can be inferred by measuring the corresponding

amplitude Ŷφ. The EPR paradox arises due to the ability to infer an observable

of one system from the result of measurement performed on a spatially separated

second system. In realistic situations, the correlations can not be perfect because

of the interaction with the environment, finite detector efficiency, etc. Hence, the

estimated amplitudes X̂θ1 and X̂θ2 with the help of the measurement results of Ŷφ1

and Ŷφ2 , respectively, are given by [Reid, 1989]

X̂e
θ1

= g1 Ŷφ1 , X̂e
θ2

= g2 Ŷφ2 , (4.6)

where g1 and g2 are scaling parameters. Now, one may choose g1, g2, φ1, and φ2

in such a way that X̂θ1 and X̂θ2 are inferred with the highest possible accuracy.

The estimated amplitudes are subject to inference errors, which arise due to the

deviation of the estimated amplitudes from the true amplitudes X̂θ1 and X̂θ2 , and

are captured by (X̂θ1 − X̂e
θ1

) and (X̂θ2 − X̂e
θ2

), respectively. The average errors of

the inferences are given by

(∆infX̂θ1)
2 = 〈(X̂θ1 − X̂e

θ1
)2〉 = 〈(X̂θ1 − g1 Ŷφ1)

2〉 ,

(∆infX̂θ2)
2 = 〈(X̂θ2 − X̂e

θ2
)2〉 = 〈(X̂θ2 − g2 Ŷφ2)

2〉 . (4.7)

The values of the scaling parameters g1 and g2 are chosen such that
∂(∆infX̂θ1 )2

∂g1
=

0 =
∂(∆infX̂θ2 )2

∂g2
, from which it follows that

g1 =
〈X̂θ1 Ŷφ1〉
〈Ŷ 2

φ1
〉

, g2 =
〈X̂θ2 Ŷφ2〉
〈Ŷ 2

φ2
〉

. (4.8)

The values of φ1 (φ2) are obtained by maximizing Cθ1,φ1 (Cθ2,φ2). Now, due to the

commutation relations [X̂, P̂X ] = i ; [Ŷ , P̂Y ] = i , it is required that the product

of the variances of the above inferences (∆infX̂θ1)
2 (∆infX̂θ2)

2 ≥ 1/4 . Hence,

the EPR paradox occurs if the correlations in the field quadratures lead to the

condition

SEPR ≡ (∆infX̂θ1)
2 (∆infX̂θ2)

2 <
1

4
. (4.9)
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4.2.2 Example of steerability of two mode squeezed vac-

uum state

Let us consider a two mode squeezed vacuum state |NOPA〉, produced in non-

degenerate optical parametric amplifier. This is actually a two mode entangled

Gaussian state. The mathematical expression of this state is given by [Agarwal,

2013]

|NOPA 〉 = | ξ 〉 = S(ξ) |0, 0〉 =
√

1− λ2

∞∑
n=0

λn |n, n〉 , (4.10)

where λ = tanh(r) ∈ [0, 1], the squeezing parameter r > 0 and |m,n〉 =

|m〉A ⊗ |n〉B (where |m〉 and |n〉 are the usual Fock states). S(ξ) (= eξ â
†
1â
†
2− ξ∗a1 a2 ,

where ξ = r ei φ) is the squeezing operator (unitary). A and B are the two involved

modes for Alice and Bob respectively.

For the NOPA state given by Eq. (4.10), the inferred uncertainties is given by

(∆infXθ)
2 =

1

2
cosh[2r]− 1

2
tanh[2r] sinh[2r] cos2[θ + φ] , (4.11)

where the quadrature amplitude Xθ is inferred by measuring the corresponding

amplitude Yφ. For two different values of θ, i.e., θ1 = 0 and θ2 = π/2, the

minimum values of (∆infXθ)
2 are

(∆infXθ1)
2 = (∆infXθ2)

2 =
1

2 cosh[2r]
, (4.12)

which occur for φ1 = 0 and φ2 = π/2, respectively. The product of uncertainties

is thus 1
4 cosh2[2r]

, which has the value 1/4 for r → 0, and asymptotically reaches

the value 0 for r →∞. This shows that the Reid condition (4.9) for occurrence of

the EPR paradox holds. Hence, the two mode squeezed vacuum state shows EPR

steering for all values of r except at r = 0.

4.3 Limitations of the Reid inequality

The Reid inequality is effective in demonstrating the EPR paradox for systems

in which correlations appear at the level of variances, i.e., the Reid criterion can

detect steerability of Gaussian states. However, this criterion fails to demonstrate
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steering by more general non-Gaussian states, for example, the two-dimensional

harmonic oscillator, as we will show later in this chapter [Chowdhury et al., 2014].

4.4 Steering as an information-processing task

A modern formulation of EPR steering was presented by Wiseman et al. [Caval-

canti et al., 2009; Wiseman, Jones, and Doherty, 2007] as an information-processing

task. They considered that one of the two parties (say, Alice) prepares system A

and system B in a combined state ρAB, and sends system B to Bob. The procedure

is repeated as many times as required. Bob’s particle is assumed to possess a defi-

nite state, even if it is unknown to him (local hidden state). Bob also believes that

his particle is quantum and he will make quantum measurements on his particle.

No such assumptions are made for Alice, and hence this formulation of steering is

an asymmetric task. Alice and Bob make measurements on their respective par-

ticles, and communicate classically. Alice’s task is to convince Bob that the state

they share is entangled. If correlations between Bob’s measurement results and

Alice’s declared results can be explained by a local hidden state (LHS) model for

Bob, he is not convinced. This is because Alice may cheat him in a way that she

could have drawn a pure state at random from some ensemble and sent it to Bob,

and then chosen her result based on her knowledge of this LHS. Conversely, if the

correlations cannot be so explained, then the state must be entangled. Alice will

be successful in her task of steering if she can create genuinely different ensembles

for Bob by steering Bob’s state. It may be noted that a similar formulation of

Bell nonlocality as an information-theoretic task is also possible [Wiseman, Jones,

and Doherty, 2007], where Alice and Bob, both will not be restricted to possess

quantum particles, and the correlations between Alice and Bob may be described

in terms of a local hidden variable (LHV) model.

In the above situation, an EPR steering inequality [Cavalcanti et al., 2009] may

be derived involving an experimental situation for qubits with n measurement

settings for each side. Bob’s k-th measurement setting is taken to correspond with

the observable σ̂k, and Alice’s declared result is denoted by the random variable

Ak → {−1, 1} . Violation of the inequality

1

n

n∑
k=1

〈Ak σ̂k〉 ≤ Cn (4.13)
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reveals the occurrence of steering, where

Cn ≡ max {Ak}

(
λmax

n

n∑
k=1

Ak σ̂k

)
.

Cn is the maximum value of the left-hand side of the inequality (4.13) if Bob

has a preexisting state known to Alice, with λmax being the largest eigenvalue of

the operator 1
n

∑n
k=1 Ak σ̂k . Experimental demonstration of steering for mixed

entangled states [Saunders et al., 2010] that are Bell local has confirmed that

steering is a weaker form of correlations compared to nonlocality.

4.5 The entropic steering inequality and its for-

mulation

For the case of continuous variable systems, the Reid criterion is an indicator for

steering. However, there exist several pure entangled continuous variable states

which do not reveal steering through the Reid criterion. An example of such a

state is provided in Ref. [Walborn et al., 2011]. Since entanglement is a weaker

form of correlations compared to steering [Cavalcanti et al., 2009; Wiseman, Jones,

and Doherty, 2007], it is clear that for such states the steering correlations do not

appear up to second order (variances) that may be checked by the Reid criterion.

The Reid criterion itself is derived using the Heisenberg uncertainty relation in-

volving product of variances of noncommuting observables. On the other hand,

more stronger uncertainty relation will give more stronger steering inequality. A

more general form of the uncertainty relation of, for example, the position and mo-

mentum distributions of a quantum system is provided by the entropic uncertainty

relation [Bialynicki-Birula and Mycielski, 1975] given by

hQ (X) + hQ (P ) ≥ ln πe , (4.14)

which is lower bounded by ln πe . Here, hQ is the Shannon entropy for the

measurement of observables i, where i ∈ {X,P} . As the entropic function

contains correlations of all orders, the entropic uncertainty relation is stronger

than the Heisenberg uncertainty relation.
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4.5.1 Formulation of the entropic steering inequality

Walborn et al. [Walborn et al., 2011] have derived an entropic steering inequality

on the basis of the stronger entropic uncertainty relation. They have considered

a joint probability distribution of two parties, Alice and Bob, corresponding to a

nonsteerable state for which there exists a local hidden state (LHS) description,

given by

P(rA, rB) =
∑
λ

P(λ) P(rA |λ) PQ (rB |λ) , (4.15)

where rA and rB are the outcomes of measurements of the observables RA and

RB respectively; λ’s are hidden variables that specify an ensemble of states; P
are general probability distributions; and PQ are probability distributions corre-

sponding to the quantum state possessed by Bob, and specified by λ. Now, using

a rule for conditional probabilities P (a, b | c) = P (b | c)P (a | b) which holds when

{b} ∈ {c}, i.e., there exists a local hidden state of Bob predetermined by Alice, it

follows that the conditional probability P(rB | rA) becomes

P(rB | rA) =
∑
λ

P(rB, λ | rA) (4.16)

with P (rB, λ | rA) = P (λ | rA)PQ(rB |λ) . It is clear that (4.15) and (4.16) are

equivalent conditions for nonsteerability. Next, we consider the relative entropy

for two distributions p (X) and q (X) defined as

H(p (X) || q (X)) =
∑
x

px ln (px/qx) . (4.17)

So, the positivity of the relative entropy between the probability distributions

P(rB, λ | rA) and P(λ | rA)P(rB | rA) gives that

∑
λ

∫
drB P(rB, λ | rA) ln

P(rB, λ | rA)

P(λ | rA)P(rB | rA)
≥ 0 . (4.18)

Using the nonsteering condition (4.16), the definition of conditional entropy which

is given by

h (X |Y ) = −
∑
x,y

p(x, y) ln p(x | y) , (4.19)
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and averaging over all measurement outcomes rA, it follows that the conditional

entropy h (RB |RA) satisfies

h (RB |RA) ≥
∑
λ

P(λ) hQ (RB |λ) . (4.20)

Considering a pair of variables SA, SB conjugate to RA, RB respectively, a similar

bound on the conditional entropy may be written as

h (SB |SA) ≥
∑
λ

P(λ) hQ (SB |λ) . (4.21)

For the LHS model for Bob, it is clear that the entropic uncertainty relation (4.14)

holds for each state marked by λ. Averaging over all hidden variables, it follows

that

∑
λ

P(λ) [hQ (RB |λ) + hQ (SB |λ) ] ≥ ln πe . (4.22)

Now, using the bounds (4.20) and (4.21) in the relation (4.22), one gets the entropic

steering inequality given by

h (RB |RA) + h (SB |SA) ≥ ln πe . (4.23)

The violation of the inequality (4.23) for a given state will give the demonstration

of steerability of that state. Using the relation between information entropy and

variance, it has been further shown by Walborn et al. [Walborn et al., 2011] that

the Reid criterion follows in the limiting case of the entropic steering relation

(4.23). So, the entropic steering inequality should be stronger than the Reid

criterion for steering.

4.5.2 An example of steering

Walborn et al. [Walborn et al., 2011] have presented an example of the state given

by (up to a suitable normalization)

φn(xA, xB) = Hn

(
xA + xB√

2σ+

)
e−(xA+xB)2/4σ2

+ e−(xA−xB)2/4σ2
− , (4.24)
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where Hn is the nth-order Hermite polynomial, which does not reveal steering

using the Reid criterion when σ± / σ∓ < 1+1.5
√
n , whereas the entropic steering

criterion (4.23) is able to show steering except when the state is separable, i.e.,

for n = 0, and σ+ = σ−. In the following section, we will use the entropic steering

inequality for demonstrating steering by several continuous variable non-Gaussian

states.

4.6 Steering and nonlocality for non-Gaussian

states

Now, we shall study steering and nonlocality for several non-Gaussian states. First,

we shall study the steering and nonlocal properties of the entangled states con-

structed using the eigenstates of the two-dimensional harmonic oscillator, i.e.,

Laguerre-Gaussian (LG) beams. Then, we shall discuss some properties for non-

Gaussian states obtained by subtracting single and two photons from two-mode

squeezed vacuum states. The steerability of these states will be tested through

both the Reid criterion and the entropic steering criterion. Also, we shall compare

the strength of steering with the degree of nonlocality, i.e., the amount of Bell vio-

lation for such states. Finally, we investigate the nonlocal and steering properties

of another class of non-Gaussian states, viz. NOON states.

4.6.1 Non-Gaussian entangled states of a two-dimensional

harmonic oscillator

The importance of the two-dimensional harmonic oscillator cannot be overem-

phasized in the context of quantum mechanics. The historical development of

radiation theory started with the correspondence of the two modes of the radia-

tion field. The classic problem of the charged particle in an electromagnetic field

leading to the existence of Landau levels was developed using the same machinery.
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4.6.1.1 The Laguerre-Gaussian (LG) wave function and the correspond-

ing Wigner function

The energy eigenfunctions of the two-dimensional harmonic oscillator may be ex-

pressed in terms of Hermite-Gaussian (HG) functions given by

unm(x, y) =

√
2

π

(
1

2n+mw2 n!m!

)1/2

Hn

(√
2x

w

)
Hm

(√
2 y

w

)
e− (x2+y2)/w2

,

(4.25)

and this is normalized, i.e.,
∫
|unm(x, y) |2 dx dy = 1. Superpositions of HG wave

functions [Beigersbergen et al., 1993; Danakas and Aravind, 1992] may construct

entangled states as follows

Φnm(ρ, θ) =
n+m∑
k=0

un+m−k,k (x, y)
f

(n,m)
k

k!

(√
−1
)k √k! (n+m− k)!

n!m! 2n+m
, (4.26)

f
(n,m)
k =

dk

dtk
[(1− t)n (1 + t)m]| t=0 , (4.27)

where Φnm(ρ, θ) are the well-known Laguerre-Gaussian functions. The LG beams

are physically realizable field configurations [Fickler et al., 2012; Molina-Terriza,

Torres, and Torner, 2007] containing optical vortices with interesting topologi-

cal [Nye and Berry, 1974] and coherence [Agarwal and Banerji, 2002; Simon and

Agarwal, 2000] properties. Using the Eq. (4.25), the LG beam can be rewritten

as [Agarwal, 2013]

Φnm(ρ, θ) = ei (n−m) θ e−ρ
2/w2

(−1) min (n,m)

(
ρ
√

2

w

) |n−m|

×
√

2

π n!m!w2
L
|n−m|
min (n,m)

(
2 ρ2

w2

)
[ min (n,m)]! (4.28)

with
∫
|Φnm(ρ, θ) |2 dx dy = 1, where w is the beam waist, l = |n −m| is the

angular momentum and Llp(x) is the generalized Laguerre polynomial. As the

superposition (4.26) is like a Schmidt decomposition, which plays a key role in
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defining the quantum entanglement, the Schmidt form (4.26) signifies the entan-

glement of the LG wave functions. In the special case

Φ 10 =
2√
π w2

(x+ i y) e−(x2+y2)/w2

,

Φ 01 =
2√
π w2

(x− i y) e−(x2+y2)/w2

. (4.29)

It is henceforth convenient to work with the pair of dimensionless quadratures

{X, PX} and {Y, PY }, given by

x (y)→ w√
2
X (Y ) , px (py)→

√
2 ~
w

PX (PY ) . (4.30)

The canonical commutation relations are [X̂, P̂X ] = i , [Ŷ , P̂Y ] = i, and the

operator P̂X and P̂Y are given by P̂X = −i ∂
∂X

and P̂Y = −i ∂
∂Y

, respectively.

The Wigner function corresponding to the LG wave function in terms of the scaled

variables is given by

Wnm(X,PX ;Y, PY ) =
(−1)n+m

π2
Ln [ 4 (Q0 +Q2)]

×Lm [ 4 (Q0 −Q2)] exp (− 4Q0) , (4.31)

where

Q0 =
1

4

[
X2 + Y 2 + P 2

X + P 2
Y

]
, (4.32)

Q2 =
X PY − Y PX

2
. (4.33)

The Wigner function is one of the important quasiprobabilities and the reason

behind using it here is that we can get easily the marginal probabilities from

the Wigner function. From the form of Q2, we may state that LG beams have

〈X PY 〉 6= 0 type correlations between two different light modes. In next sections,

we shall use this Wigner function to detect steering and Bell nonlocality of the

state.

4.6.1.2 The steerability of LG beams

Now, we shall analysis the quantum correlations present in the LG wave functions

for the purpose of demonstrating steering.
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Steerability through the Reid criterion :

Let us now check how the Reid criterion applies to the case of LG wave functions.

In order to do so, we shall estimate the product of uncertainties of the values of

inferred observables (∆infXθ1)
2 (∆infXθ2)

2. This is performed by maximizing the

correlation function Cθ1,φ1 and Cθ2,φ2 . Using Eqs. (4.7) and (4.8), it follows that

(∆infXθ)
2 = 〈X2

θ 〉
[

1−
(
C max
θ,φ

)2
]
. (4.34)

The maximum correlation strength |C max
θ,φ | = 1

2
occurs for φ − θ = k π

2
, where

k is an odd integer. For arbitrary values of n and m, it can be shown that the

expression of the maximum correlation function is given by

C max
0,π/2 =

〈X̂ P̂Y 〉√
〈X̂2〉 〈P̂ 2

Y 〉
, C max

π/2,π = − 〈P̂X Ŷ 〉√
〈P̂ 2

X〉 〈Ŷ 2〉
. (4.35)

In Fig. 4.1, we have plotted the product of uncertainties (∆infXθ1)
2 (∆infXθ2)

2 ver-

sus the angular momentum n. It is seen that for each n, (∆infXθ1)
2 (∆infXθ2)

2 ≥
1/4 [Chowdhury et al., 2014]. Therefore, the Reid criterion given by Eq. (4.9) is

not satisfied for any value of n. Hence, it is not possible to demonstrate steering

by entangled LG modes using the Reid criterion.

Steerability through the entropic steering criterion :

We now apply the entropic steering criterion to the case of the LG wave functions.

In the entropic steering inequality given by the Eq. (4.23), the observables have

to be chosen such that there exist correlations between RA and RB (SA and SB).

For the case of the LG wave functions, we shall use the nonvanishing 〈X PY 〉 type

correlations, as evident from the Wigner function (4.33). Thus, in terms of the

conjugate pairs of dimensionless quadratures, the inequality (4.23) becomes

h (X |PY) + h (PX | Y) ≥ ln πe , (4.36)

where X, Y, PX , and PY are the outcomes of measurements X , Y , PX , and PY
respectively. Here, the conditional entropies h (X |PY) and h (PX | Y) are given
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Figure 4.1: The product of uncertainties (∆infXθ1)2 (∆infXθ2)2 is plotted versus n
for m = 0. The figure shows that the LG beam does not demonstrate steering through

the Reid criterion.

by

h (X |PY) = h (X ,PY)− h (PY) ,

h (PX | Y) = h (PX ,Y)− h (Y) , (4.37)

with

h (X ,PY) = −
∫ ∞

−∞
P(X,PY ) lnP(X,PY ) dX dPY ,

h (PY) = −
∫ ∞

−∞
P(PY ) lnP(PY ) dPY , (4.38)

and similarly for h (PX ,Y) and h (Y). The marginal probability distributions are

obtained using the Wigner function (4.33) for the LG wave function.

For n = 0 and m = 0, the LG wave function becomes a separable state with the

corresponding Wigner function given by

W 00(X,PX ;Y, PY ) =
e−X

2−Y 2−P 2
X −P

2
Y

π2
. (4.39)
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In this case the relevant entropies are given by

h (X ,PY) = h (PX ,Y) = ln πe ,

h (Y) = h (PY) =
1

2
ln πe , (4.40)

and hence, the entropic steering inequality becomes saturated, i.e.,

h(X |PY) + h(PX | Y) = ln πe . (4.41)

For n = 1 and m = 0, the Wigner function has the form

W 10(X,PX ;Y, PY ) = e−X
2−Y 2−P 2

X −P
2
Y

(PX − Y )2 + (PY +X)2 − 1

π2

(4.42)

and the relevant entropies turn out to be

h (X ,PY) = h (PX ,Y) ≈ 2.41509 ,

h (Y) = h (PY) ≈ 1.38774 . (4.43)

Hence, the entropic steering relation in this case becomes

h (X |PY) + h (PX | Y) ≈ 2.05471 < ln πe , (4.44)

thus indicating the demonstration of steering of LG beam for n = 1 and m = 0.

The non-Gaussian nature of the Wigner function for n ≥ 1 enables demonstration

of steering through the entropic criterion [Chowdhury et al., 2014]. For higher

values of angular momentum, we have plotted the left-hand side of the entropic

steering relation in Fig. 4.2. We can see that violation of the inequality becomes

stronger for higher values of n [Chowdhury et al., 2014].

4.6.1.3 The Bell nonlocality of LG beams

Next, we want to study the Bell violation [Bell, 1964] of the LG wave func-

tion. In order to do so, here we use the Wigner transform Πnm(X,PX ;Y, PY )

[ = π2 Wnm(X,PX ;Y, PY ), where Wnm(X,PX ;Y, PY ) is given by Eq. (4.31)]
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Figure 4.2: The figure shows the violation of the entropic steering inequality (4.36)
for different values of n (except n = 0) of the LG wave function, keeping m = 0.

[Zhang et al., 2007]. In continuous variable systems, the Bell-Clauser-Horne-

Shimony-Holt (Bell-CSHS) inequality can be written in terms of the Wigner trans-

form as [Jeong et al., 2003]

| IB | = |Πn,m(X1, PX1 ;Y1, PY1) + Πn,m(X2, PX2 ;Y1, PY1)

+ Πn,m(X1, PX1 ;Y2, PY2)− Πn,m(X2, PX2 ;Y2, PY2) | < 2 . (4.45)

For n = 0 and m = 0, | IB | = 2 and for n > 1, the amount of Bell violation

increases with n, keeping m = 0. The Bell violation asymptotically reaches the

maximum value 2
√

2 of quantum mechanics when n → ∞, as discussed in the

previous chapter [Chowdhury, Majumdar, and Agarwal, 2013].

4.6.1.4 Comparison between the steerability and the nonlocality

Now, we shall make a comparison between the strength of steering and the degree

of nonlocality of LG wave function, where the strength of steering is measured by

the amount of violation of the steering inequality and the degree of nonlocality

is measured by the amount of violation of the Bell’s inequality. In the Table

4.1, we make comparison among the Bell violation, the entropic EPR steering,

and the Reid EPR steering for different values of n keeping m = 0 [Chowdhury
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n
| IBmax |

2
ln πe

h (X |PY )+h (PX | Y)
4 (∆infX̂θ1)

2 (∆infX̂θ2)
2

0 1 1 1
1 1.11934 1.04381 2.25
2 1.17437 1.0567 2.77778
3 1.20128 1.06256 3.0625
4 1.21738 1.06572 3.24
5 1.22813 1.06758 3.36111
6 1.23584 1.0687 3.44898
7 1.24165 1.06939 3.51563
8 1.24618 1.0698 3.5679
9 1.24982 1.07002 3.61
10 1.25281 1.07011 3.64463

Table 4.1: Comparison among the Bell violation, the entropic EPR steering, and
the Reid EPR steering for different values of n with m = 0.

et al., 2014]. Here,
| IBmax |

2
> 1 signifies Bell violation, ln πe

h (X |PY )+h (PX | Y)
> 1

signifies steering by the entropic steering criterion, and 4 (∆infX̂θ1)
2 (∆infX̂θ2)

2 <

1 signifies steering through the Reid EPR steering criterion. From the first two

columns of the table, one can note that both the maximum Bell violation and the

steering through entropic criterion increase monotonically with n. On the other

hand the last column provides values of the products of inferred variances, showing

that the Reid criterion is unable to identify steering for any value of n in this case.

4.6.2 Photon-subtracted squeezed vacuum states

Non-Gaussian states can be prepared by the addition or subtraction of photons

to or from the Gaussian states respectively. Here, we consider the particular class

of non-Gaussian states obtained only by the subtraction of photons from the two

mode entangled Gaussian state, i.e., NOPA state.
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4.6.2.1 Formulation of photon-subtracted squeezed vacuum state and

the corresponding Wigner function

First, we consider the two mode squeezed vacuum state, i.e., NOPA state given by

the Eq. (4.10). This state is an entangled Gaussian state. The Wigner function

associated with the state (4.10) is given by [Agarwal, 2013]

W| ξ 〉(α, β) =
4

π2
exp[− 2 |α cosh(r)− β∗ sinh(r) ei φ |2

− 2 | − α∗ sinh(r) ei φ + β cosh(r) |2 ] , (4.46)

which is normalized, i.e.,∫ ∫
W| ξ 〉(α, β) d2α d2β = 1 . (4.47)

Here, α and β represent complex phase space displacements, and {x, kx} , {y, ky}
are conjugate quadrature observables. In terms of dimensionless quadratures

(X,PX , Y, and PY ), α and β can be written as α = X+ i PX√
2

and β = Y+ i PY√
2

,

and with φ = 0 the Wigner function becomes

W ξ (X,PX ;Y, PY ) =
1

π2
exp[− 2 (PX PY −X Y ) sinh 2r

−(X2 + Y 2 + P 2
X + P 2

Y ) cosh 2r ] . (4.48)

Here, it is clear that the correlations exist between X and Y , and PX and PY .

{X, PX} and {Y, PY } are conjugate pairs of dimensionless quadratures.

Now, the subtraction of n photons from the state | ξ 〉 (4.10) may be represented

as

| ξn 〉 = [ a⊗ I + (−1)k I ⊗ b ]n | ξ 〉 , (4.49)

where k ∈ {0, 1} , and it is assumed that one does not know from which mode the

photon is subtracted. After proper normalization the state becomes
√
Nn | ξn 〉,

where the normalization constant Nn is given by (Nn)−1 = 〈 ξn | ξn 〉. The state

| ξn 〉 is the photon-subtracted squeezed vacuum state and it is a non-Gaussian

state. The Wigner function of the state | ξn 〉 is related to the Wigner function of

the state | ξ(n−1) 〉 by

Wn(α, β) = Λ̂(α, β) W(n−1)(α, β) , (4.50)
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where the operator Λ̂(α, β) is given by

Λ̂(α, β) =

[(
α∗ +

1

2

∂

∂α

) (
α +

1

2

∂

∂α∗

)
+

(
α∗ +

1

2

∂

∂α

) (
β +

1

2

∂

∂β∗

)
+

(
α +

1

2

∂

∂α∗

) (
β∗ +

1

2

∂

∂β

)
+

(
β∗ +

1

2

∂

∂β

) (
β +

1

2

∂

∂β∗

)]
.

(4.51)

The Wigner function Wn(α, β) is obtained from W (α, β) given by the Eq. (4.46)

by applying n times the operator Λ̂(α, β), i.e.,

Wn(α, β) = Λ̂n(α, β) W (α, β) , (4.52)

and normalizing suitably [
∫
Wn(α, β) d2α d2β = 1].

Now, if we consider that only single photon is reduced from each mode, i.e., by

applying the operator a ⊗ I + (−1)k I ⊗ b on the state | ξ 〉, the state (4.49)

becomes

| ξ1 〉 =
√

1− λ2
∑

λn
√
n
[
|n− 1, n 〉+ (−1)k |n, n− 1 〉

]
(4.53)

with the normalization constant N1 = 1
2 sinh2(r)

. The Wigner function for the

above state is given by

W1(α, β) =
4

π2
exp

[
2 (αβ + α ∗β ∗) sinh(2r)− 2

(
|α |2 + | β |2

)
cosh(2r)

]
×
[
−
{

2 (αβ + α ∗β ∗) + (−1)k
(
α2 + α ∗2 + β2 + β ∗2

)}
sinh(2r)

+ 2
{
|α |2 + | β |2 + (−1)k (αβ ∗ + α ∗ β)

}
cosh(2r)− 1

]
.

(4.54)

In terms of the dimensionless quadratures X,PX , Y , and PY , the Wigner function

for the single-photon-subtracted squeezed vacuum state becomes

W1(X,PX ;Y, PY ) =
1

π2
exp [ 2 sinh(2r) (X Y − PX PY )

− cosh(2r)
(
X2 + Y 2 + P 2

X + P 2
Y

) ]
×
[
− sinh(2r)

{
P 2
X − 2PX PY + P 2

Y − (X − Y )2
}

+ cosh(2r)
{
P 2
X − 2PX PY + P 2

Y + (X − Y )2
}
− 1
]
.

(4.55)
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It is clear from the form of the Wigner function that the state | ξ1 〉 is non-Gaussian

in nature and there exist 〈X Y 〉 6= 0 type correlations between the two modes.

The Wigner function given above can be used to show the steerability and the

nonlocality of this non-Gaussian state.

4.6.2.2 The steerability of the state | ξ1 〉

Now, we shall check the steerability of the single-photon-subtracted state through

both the Reid criterion and the entropic steering criterion.

Steerability through the Reid criterion :

We have seen earlier that the Reid criterion is able to bring out the steering

property of two mode squeezed vacuum state. Let us now see whether it is possible

to demonstrate steering for single-photon-annihilated state (4.53) using the Reid

criterion. The uncertainty for the inferred observables is in this case given by

(∆infXθ)
2 = cosh(2r)− sinh(r) cosh(r) cos(2θ)

− [ cosh(2r) cos(θ − φ)− 2 sinh(2r) cos(θ + φ) ]2

4 [ cosh(2r)− sinh(r) cosh(r) cos(2φ) ]
. (4.56)

Calculating the minimum value of (∆infXθ)
2 for two different values of θ, i.e., for

θ1 = 0 and θ2 = π/2, the product of uncertainties turns out to be

(∆infXθ1)
2 (∆infXθ2)

2 =
9

2 [ 3 cosh(4r) + 5 ]
, (4.57)

which goes to 0 for r →∞. But for r → 0, the value of the product of uncertain-

ties will be greater than 1/4. In the Fig. 4.3(a), we have compared the amount

of steerability of the NOPA state and the single-photon-annihilated NOPA state

through the Reid criterion. We can see that the Reid criterion fails in the latter

case for smaller values of the squeezing parameter r [Chowdhury et al., 2014].

Steerability through the entropic steering criterion :

Next, we shall use the entropic steering inequality to demonstrate the steerability

of both the NOPA state and the photon-subtracted squeezed vacuum state. Con-

sidering the measurements corresponding to either position (r = x) or momentum

(s = p), there exist nonvanishing 〈X Y 〉 6= 0 type correlations for both of the

state. So in terms of the dimensionless variables (X,PX , Y, and PY ), the entropic
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Figure 4.3: (a) The horizontal line represents the uncertainty bound below which
steering is signified. The lower curve represents the product of inferred uncertainties
for the two-mode squeezed vacuum state. Steering is demonstrated for all values of r
through the Reid criterion. The upper curve represents the product of uncertainties for
the photon-subtracted state. Clearly, the Reid criterion fails to show steering for smaller
values of r in the latter case. (b) The horizontal line represents the bound ln πe. The
purple and blue curves represent the left-hand side of the entropic steering inequality
for the squeezed state and the single-photon-subtracted squeezed state, respectively.

steering inequality (4.23) becomes

h (Y |X ) + h (PY | PX ) ≥ ln πe , (4.58)

where X, Y, PX , and PY are the outcomes of measurements X , Y , PX , and PY
respectively. Here, the conditional entropies h (Y |X ) and h (PY | PX ) are given

by

h (Y |X ) = h (X ,Y)− h (X ) ,

h (PY | PX ) = h (PX ,PY)− h (PX ) , (4.59)

and calculated using the marginal probability distributions obtained from the cor-

responding Wigner functions [Eq. (4.48) and Eq. (4.55)]. One can thus calculate

the left-hand side of the inequality (4.58) for the single-photon-subtracted state

and the NOPA state for any value of the squeezing parameter r > 0. In Fig.

4.3(b), we have plotted the left-hand side of the entropic steering inequality ver-

sus r for the squeezed vacuum state as well as the single-photon-subtracted state.

The figure shows that the violation of the steering inequality increases with r for

each of these two states. Hence, it is clear from the Fig. 4.3 that the entropic
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steering criterion is stronger than the Reid steering criterion [Chowdhury et al.,

2014], as for smaller values r, the entropic criterion demonstrates the steerability

of the single-photon-subtracted NOPA state, a feature which remains unable to

be captured by the Reid criterion.

4.6.2.3 The Bell nonlocality of the state | ξ1 〉

First, we consider the Bell violation by the NOPA state, which has been stud-

ied earlier [Banaszek and Wodkiewicz, 1998]. In terms of the Wigner transform

Π(α, β) [ = π2

4
W| ξ 〉(α, β) ] the Bell sum is given by [Banaszek and Wodkiewicz,

1998]

IB = Π(α = 0, β = 0 ) + Π(α =
√
J, β = 0 ) + Π(α = 0, β = −

√
J )

−Π(α =
√
J, β = −

√
J )

= 1 + 2 exp [− 2 J cosh(2r)]

− exp
[
− 4 J { cosh2(r)− 2 cos(φ) cosh(r) sinh(r) + sinh2(r) }

]
,

(4.60)

where J represents amount of displacement in the phase space. Here, we choose

φ = 0. By considering r → ∞ [Banaszek and Wodkiewicz, 1998], the above

expression becomes

IB (J, r) = 1− exp [− 4 J e2 r] + 2 exp [− J e2 r] . (4.61)

Particularly for the above choice of settings, IB will be maximum with the value

2.19055 [Banaszek and Wodkiewicz, 1998], which occurs for the constraints

J exp [2 r] =
1

3
ln 2 , (4.62)

where J << 1. For example, IBmax ( = 2.19055 ) occurs for the choice of param-

eters J = 0.00009467 and r = 3.9. Next, we consider a more general choice of

settings [Jeong et al., 2003; Olivares and Paris, 2004], where Alice measures either

at α1 or at α2, and Bob measures either at β1 or at β2. For this general case, the

Bell sum can be written as

IB = Π(α1, β1) + Π(α1, β2) + Π(α2, β1)− Π(α2, β2) , (4.63)
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which leads to the maximum Bell violation IBmax = 2.32449 for the choice of pa-

rameters α1 = 0.0036990, α2 = −0.0115244, β1 = −0.0039127, β2 = 0.0113108,

and r = 3.8853675.

Now, to evaluate the Bell violation of the photon-subtracted squeezed vacuum

states, we use the Wigner transform Πn(α, β) [ = π2

4
Wn(α, β) ]. Considering the

more general choice of measurement settings given in the Eq. (4.63), the Bell sum

using the above Wigner transform may be expressed as

IBn = Πn(α1, β1) + Πn(α1, β2) + Πn(α2, β1)− Πn(α2, β2) . (4.64)

We are interested to see whether the maximum Bell violation for this non-Gaussian

state exceeds the maximum value obtained for the Gaussian state. So, to obtain

the maximum Bell violation, one maximizes IBn over α1, α2, β1, β2, and r for a

given value of n.

Considering single photon reduction from each mode, i.e., for n = 1, the cor-

responding single-photon-subtracted NOPA state and the corresponding Wigner

function are given by the Eq. (4.53) and Eq. (4.54), respectively. For this case,

the maximum Bell violation, i.e., (IB1)max = − 2.5444 [Chowdhury et al., 2014]

occurs for the choices α1 = −0.0067, α2 = 0.0201, β1 = 0.0067, β2 = −0.0201,

r = 3.0, and k = 1. Now, comparing with the two-mode squeezed state where the

Bell violation is − 2.3245 [Jeong et al., 2003], it is seen that by photon annihila-

tion, the maximum Bell violation increases. For the case of two photon subtraction

from each mode ([ a ⊗ I + (−1)k I ⊗ b ]2), we can similarly obtain the maximum

Bell violation, which turns out to be (IB2)max = 2.6305 [Chowdhury et al., 2014]

for the choices α1 = −0.1338, α2 = −0.1392, β1 = −0.1365, β2 = −0.1311,

r = 4.4015, and k = 1. We thus see that the maximum Bell violation increases

further.

4.6.2.4 Comparison between the steerability and the nonlocality

In order to compare two types of correlations, we make the following table. In

Table 4.2, Bell violation and the entropic EPR steering of both the NOPA state

and the single-photon-subtracted NOPA state are compared for different values of

r. Here, | IBmax |
2

> 1 signifies Bell violation, and ln πe
h (Y |X )+h (PY | PX )

> 1 identifies
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State r Bell violation Entropic EPR steering criterion

(= | IBmax |
2

) (= ln πe
h (Y |X )+h (PY | PX )

)

| ξ 〉 0 1.0 1.0
| ξ 〉 0.2 1.040 1.038
| ξ 〉 0.4 1.091 1.157
| ξ 〉 0.6 1.125 1.383
| ξ 〉 0.8 1.144 1.790
| ξ 〉 1 1.153 2.616
| ξ 〉 1.2 1.159 4.991
| ξ 〉 1.4 1.160 62.737
| ξ1 〉 0 1.120 1.044
| ξ1 〉 0.2 1.189 1.061
| ξ1 〉 0.4 1.229 1.124
| ξ1 〉 0.6 1.252 1.264
| ξ1 〉 0.8 1.263 1.529
| ξ1 〉 1 1.267 2.027
| ξ1 〉 1.2 1.271 3.132
| ξ1 〉 1.4 1.271 7.531

Table 4.2: Comparison of the Bell violation with the entropic EPR steering for the
NOPA state and the single-photon-annihilated NOPA state.

steering. One sees that although the magnitude of Bell violation reaches a maxi-

mum for a certain value of the squeezing parameter r, and subsequently decreases

gradually, the strength of steering increases monotonically with r. Hence, it would

be much easier to observe steering compared to Bell violation for higher values of

r [Chowdhury et al., 2014].

4.6.3 NOON states

The maximally path-entangled number states have the form given by

|ψ 〉 =
1√
2

(
|N 〉a | 0 〉b + ei φ| 0 〉a |N 〉b

)
. (4.65)

This is an example of a two-mode entangled state such that N photons can be

found either in the mode a or in the mode b, and is referred to as a NOON state
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[Lee, Kok, and Dowling, 2002]. The utility of NOON states in making precise

interferometric measurements is of much importance in quantum metrology. Such

states have been recently experimentally realized up to N = 5 [Afek, Ambar, and

Silberberg, 2010]. The entanglement of NOON states is obtained in terms of the

logarithmic negativity, viz. EN = 1 [Agarwal, 2013], a value that remains constant

with N .

The Wigner distribution function for the NOON states is given by [Wildfeuer,

Lund, and Dowling, 2007]

W (α, β) =
2

π2
e− 2 |α |2− 2 |β |2

[
(−1)N

{
LN

(
4 |α |2

)
+ LN

(
4 | β |2

)}
− 22N

N !

(
α∗N β N + αN β∗N

) ]
, (4.66)

where for simplicity we choose φ = π and LN(x) is the Laguerre polynomial. In

terms of the dimensionless quadratures {X,PX} and {Y, PY } the Wigner function

becomes

W (X,PX ;Y, PY ) =
1

2π2N !
e− (X2+Y 2+P 2

X+P 2
Y )

×
[
− 2N

{
(X + i PX)N (Y − i PY )N

+ (X − i PX)N (Y + i PY )N
}

+ (−1)N N !
{
LN
[

2
(
X2 + P 2

X

)]
+LN

[
2
(
Y 2 + P 2

Y

)]} ]
.

(4.67)

The Bell-CHSH inequality

| IB | = Π (α, β) + Π (α ′, β) + Π (α, β ′)− Π (α ′, β ′) ≤ 2 (4.68)

is maximally violated with IBmax = − 2.2387, which occurs for N = 1, and

the corresponding settings are α = −β = 0.0610285, α ′ = −β ′ = −0.339053.

States with larger N do not violate the inequality (4.68). However, there are some

other Bell-type inequalities [Wildfeuer, Lund, and Dowling, 2007] for six correlated

events for which NOON states show the violation for any N .

From the expression of the Wigner function (4.67) for the NOON states, it is clear
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that the nonvanishing correlations of the type 〈X Y 〉 6= 0 are present between

the two modes of the entangled states and it is also clear about the non-Gaussian

nature of the states. Using such correlations, the entropic steering inequality for

the NOON states may be written as

h (Y |X ) + h (PY | PX ) ≥ ln πe . (4.69)

The conditional entropies h (Y |X ) and h (PY | PX ) can be calculated with the

help of the marginal probabilities obtained through the Wigner function (4.67),

using which the left-hand side of the inequality (4.69) may be obtained for different

values of N . It turns out that for N = 1, one gets

h (Y |X ) + h (PY | PX ) ≈ 2.05 < ln πe , (4.70)

thus violating the steering inequality. However, for N = 2, one gets h (Y |X ) +

h (PY | PX ) ≈ 2.25 > ln πe . Larger values of N will lead to further higher values

of h (Y |X ) +h (PY | PX ) , and hence, no steering is possible for N > 1, using the

entropic steering relation.

In Fig. 4.4, we have plotted the joint probability P (X, Y ) for two different values

of N , viz. N = 1 and N = 4, respectively. The higher peak of the N = 1

curve indicates stronger 〈X, Y 〉 correlations responsible for steering in this case.

The correlations weaken for larger values of N as is indicated by the lower peak

value of the N = 4 curve, and are not sufficient for revealing steering through the

entropic inequality. Thus, NOON states with N = 1 violate the entropic steering

inequality, but for N ≥ 1 , these states are not steerable [Chowdhury et al.,

2014]. This feature is similar to Bell violation for NOON states, which is revealed

for N = 1, but the violation of the standard Bell-CHSH inequality does not occur

for N ≥ 1 .

4.7 Limitations of the entropic steering inequal-

ity

To overcome the drawbacks of the Reid criterion for EPR-steering, the entropic

steering inequality has been proposed by Walborn et al. [Walborn et al., 2011].

This criterion is able to demonstrate steering for many states having correlation
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Figure 4.4: Correlations of the type 〈X,Y 〉 responsible for steering using the entropic
steering inequality are revealed through the joint probability distributions P (X,Y ).
The figure shows that such correlations are sufficiently strong to admit steering for

N = 1, but are significantly weakened for larger N .

higher than the second order. But it has also some limitations. As for example,

it has the limitation to show steering of the NOON states only for N = 1. For

N > 1, it is unable to detect steerability of the states [Chowdhury et al., 2014],

whereas NOON states violate some Bell-type inequalities for any N . As the Bell

violation certifies the steerability of the states, NOON states should be steerable

for all N .

4.8 Summary

In this chapter, we have studied EPR steering by non-Gaussian continuous variable

entangled states. Here, we have considered several examples of such systems, i.e.,

the two-dimensional harmonic oscillator, the photon-subtracted squeezed vacuum

state, and the NOON states. Although such states are entangled pure states,

we have shown that they fail to reveal steering through the Reid criterion for

wide ranges of parameters. Steering with such states is demonstrated using the

entropic steering inequality in terms of conditional entropies, indicating that it

is a stronger criterion than that given by Reid. We have computed the relevant

conditional entropies using the Wigner function, whose non-Gaussian nature plays

an important role in demonstrating steering. For all the above examples, we have
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performed a quantitative study of the strength of steering (determined by the

magnitude of violation of the entropic steering inequality) as a function of the state

parameters. This leads to some interesting observations, especially in comparison

with the magnitude of Bell nonlocality demonstrated by these states.

For the LG modes, one sees that the steering strength increases with the increase

of the angular momentum n, a feature that is also common to the Bell violation.

However, for both the two-mode squeezed vacuum state and the single-photon-

subtracted state derived from it, we have shown that the behaviours of the maxi-

mum Bell violation and steering strength versus the squeezing parameter are not

similar. This is evident from the fact that although the maximum Bell violation

peaks for a certain value of r, the steering strength rises monotonically with in-

creasing r. This feature clearly establishes the fact that although Bell violation

guarantees steerability, the two types of quantum correlation are distinct from each

other. Moreover, the presence of quantum correlations in such class of states may

be more easily detected through the violation of the entropic steering inequality

compared to the violation of the Bell inequality for higher values of squeezing.

Finally, we have studied steering by NOON states. Here, steering through the

entropic criterion is revealed only for N = 1, although the entanglement of such

states remains independent of N . This shows that entanglement is a different cor-

relation compared to steering, as it is also different compared to Bell nonlocality.

The above results should be useful for detecting and manipulating correlations in

non-Gaussian states for practical purposes in different arenas such as information

processing, quantum metrology, and Bose condensates. Further work on the issue

of the recently proposed symmetric steering framework [Schneeloch et al., 2013]

may be of interest using non-Gaussian resources.



Chapter 5

Stronger steerability criterion in

continuous-variable systems

The uncertainty principle introduces a sharp distinction between quantum and

classical physics. The presence of uncertainty relations endows quantum mechan-

ics with significant advantages over classical mechanics for performing different

information processing tasks such as teleportation, dense coding, etc. Uncertainty

relations are linked directly to the ability of quantum states to enable steering.

The phenomenon of quantum steering [Schrödinger, 1935, 1936] emerges from the

EPR paradox [Einstein, Podolsky, and Rosen, 1935] that was first formulated for

experimental realization [Reid, 1989] based on the Heisenberg uncertainty relation.

Subsequently, a number of improved uncertainty relations [Bialynicki-Birula and

Mycielski, 1975; Maassen and Uffink, 1988; Oppenheim and Wehner, 2010; Robert-

son, 1929; Schrödinger, 1930; Wehner and Winter, 2010] introduce various kinds

of stronger steering criteria. Nonetheless, there exist states such as the NOON

states which fail to display steering using the existing steering criteria for higher

values of N in spite of violating Bell-type inequalities [Bell, 1964; Clauser et al.,

1969]. Such a feature calls for further improved steerability conditions since steer-

ing lies between entanglement and nonlocality in the hierarchy [Wiseman, Jones,

and Doherty, 2007] of quantum correlations.

The tightest steering inequality in discrete-variable systems is obtained [Pramanik,

Kaplan, and Majumdar, 2014] through the application of the fine-grained uncer-

tainty relation (FUR) [Oppenheim and Wehner, 2010]. Fine-graining makes it

88
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possible to distinguish the uncertainty inherent in obtaining any particular com-

bination of outcomes for different measurements. In this Chapter, we shall derive

the fine-grained uncertainty relation, the corresponding steering inequality, and

security of continuous-variable systems.

5.1 Wigner function

Wigner function can be used for computing various probabilities associated with

continuous variables in phase space. There exists an analogy between the mea-

surement of spin-1/2 projectors and the parity operator, since the measurement

outcomes for both are dichotomic. It is well known [Banaszek and Wodkiewicz,

1998, 1999] that the Wigner function, expressed as an expectation value of a

product of displaced parity operators, can be used to derive Bell-CHSH inequali-

ties [Bell, 1964; Clauser et al., 1969] for continuous variables. In this chapter, we

shall use the Wigner function formalism [Banaszek and Wodkiewicz, 1998, 1999]

to derive a steering inequality for continuous variables.

5.2 Choice of appropriate observables for

continuous-variable systems

To derive fine-grained steering inequality, it is necessary to choose observables,

which will be appropriate for continuous-variable states. For this, here we choose

displaced parity observables and the usefulness of these observables in deriving

steering inequality and the ability to show steering of non-Gaussian entangled

states will be shown later. Here, we label the outcome of even parity measurement

by “0”. The corresponding projection operator is given by

Π+(β) = D(β)

(
∞∑
n=0

|2n〉 〈2n|

)
D†(β) , (5.1)

where D(β) ( = exp { β b̂†−β∗ b̂ }), is the displacement operator with coherent dis-

placement β, and b̂ and b̂† are the annihilation and creation operators, respectively.

Similarly, the projection operator corresponding to the odd parity measurement
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outcome labeled by “1” is given by

Π−(β) = D(β)

(
∞∑
n=0

|2n+ 1〉 〈2n+ 1|

)
D†(β) . (5.2)

The observable associated with the Wigner function is given by Ŵ(β) = Π+(β)−
Π−(β) which can be realized using detectors with the capability of distinguishing

the number of absorbed photons [Banaszek and Wodkiewicz, 1998, 1999]. We will

take β’s to be real displacements in the rest of this chapter.

5.3 Example of fine-grained uncertainty relation

in discrete-variable systems

The concept of fine-graining in uncertainty relations was first introduced by Op-

penheim and Wehner [Oppenheim and Wehner, 2010] to explain the failure of

quantum theory to exhibit the full non-local strength allowed by no-signaling

theory. They bound an event (which is defined by the outcomes chosen using

imposed restrictions or conditions) by its minimum possible uncertainty, or maxi-

mum possible certainty, for two incompatible observables. For single qubit system,

fine-grained uncertainty relation (FUR) can be explained by the following game

[Oppenheim and Wehner, 2010]. A binary question q ∈ {0, 1} is received by a

player, say, Bob randomly. According to the question q = 0 (1), he measures σz

(σx) observable on his system B, which is prepared in the state ρB. Here, the

average uncertainty of getting a particular outcome, say, spin up outcome (labeled

by “b = 0”) irrespective of the given question (or indeed, the average certainty)

where the average is taken over all possible choice of measurements, is bounded

by

1

2
− 1

2
√

2
≤ 1

2
[P (bσz = 0) + P (bσx = 0) ] ≤ 1

2
+

1

2
√

2
, (5.3)

where the equalities occur for maximally certain states. Here they are the eigen-

states of the observables (σz +σx)/
√

2 and (σz−σx)/
√

2 for the upper and lower

bounds, respectively. The bounds remain the same for the spin down outcome

(“b = 1”).



Chapter 5. Stronger steerability criterion in continuous-variable systems 91

5.4 Formulation of the fine-grained uncertainty

relation in continuous-variable systems

In continuous-variable systems, Bell’s inequality is shown to be violated using the

Wigner function formalism [Banaszek and Wodkiewicz, 1998, 1999]. Fine-graining

connects uncertainty with nonlocality, and hence for a given Bell-CHSH inequality

one can formulate a FUR for a bipartite system [Oppenheim and Wehner, 2010].

Similar considerations hold true for single particle quantum systems, thus making

it possible to construct a FUR for single systems using the Wigner distribution

representing the average of displaced parity measurement.

The average certainty of the parity measurement outcome b over displacements α

and β is given by 1
2

[P (bα) +P (bβ) ]. Similar to the case of discrete variables, the

average certainty is bounded by the minimum uncertainty states. In continuous

variable systems it is well known that the coherent states

|γ〉 = exp [−| γ |
2

2
]
∞∑
m=0

γm√
m!
|m〉 (5.4)

correspond to the minimum uncertainty states in phase-space. Therefore, we ob-

tain the fine-grained bounds on 1
2

[P (bα) + P (bβ) ] using the coherent states.

For even parity measurement (b = 0) at the displacement chosen from {α, β} , the

average certainty becomes

1

2
[P (bα = 0) + P (bβ = 0) ] = 〈γ| Π

+(α) + Π+(β)

2
|γ〉

=
1

2

(
exp[−| γ − α |2] cosh[ | γ − α |2]

+ exp[−| γ − β |2] cosh[ | γ − β |2]
)
, (5.5)

where, similar to the displacements α and β, we choose γ also to be real. Here,

the condition α = β → γ needs to be excluded in order to ensure that the average

certainty of getting even parity for the zero photon state does not always stay

close to 1, which is similar to getting, say, spin up outcome in discrete variables

for spin measurements along directions î and ĵ when î → ĵ. For simplification

we henceforth set α = −β, and compute the probability distribution [P (bβ =

0) + P (b−β = 0) ]. The probability distribution [P (bβ = 0) + P (b−β = 0) ] is

bounded by [ 1
2
, 3

4
], where the maximum occurs for β = γ. Similarly, the average
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certainty of odd parity measurements for the displacements β and −β is bounded

by

1

2
[P (bβ = 1) + P (b−β = 1) ] = 〈γ| Π

−(β) + Π−(−β)

2
|γ〉

=
1

2

(
exp[−| γ − β |2] sinh[ | γ − β |2]

+ exp[−| γ + β |2] sinh[ | γ + β |2]
)
. (5.6)

Hence, one gets 1
4
≤ 1

2
[P (bβ = 1) + P (b−β = 1) ] ≤ 1

2
, except at γ → 0 and

β → 0 for which the probability of getting odd counts for the zero photon state

approaches zero as shown in the Fig. (5.1).

Combining the cases of odd and even parities, one finds that the FUR bounds the

certainty for the measurement of two incompatible continuous-variable observables

by

1

4
≤ 1

2
[P (bβ) + P (b−β) ] ≤ 3

4
. (5.7)

In the Fig. (5.1), we have plotted the infimum value of 1
2

[P (bβ) + P (b−β) ] with

γ. When β → 0, the FUR (5.7) remains valid for |γ2| ≥ 1, i.e., for a source

with at least a single average photon number. Here, we only need to avoid the

situation when γ → 0 and β → 0 simultaneously. It is clear that the range of

certainty in discrete-variable systems given by Eq. (5.3) [Pramanik, Kaplan, and

Majumdar, 2014] is higher than that in continuous-variable systems [Chowdhury,

Pramanik, and Majumdar, 2015]. This feature, reflecting more uncertainty, helps

to improve the secret key rate, since higher uncertainty enables less information

to the eavesdropper.

5.5 Fine-grained steering criterion through the

violation of local hidden state model

Before going to the derivation of the fine-grained steering criterion for continuous-

variable systems, let us first begin with a brief description of EPR-steering by

considering the following game [Wiseman, Jones, and Doherty, 2007] between two

parties, say, one is Alice and the other is Bob. Alice prepares two systems A and

B in the state ρAB and sends the system B to Bob. Alice’s task is to convince
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Figure 5.1: Plot of 1
2 infβ [P (bβ = 0) + P (b−β = 0)] with γ. The solid curve is

for 1
2 maxβ [P (bβ = 0) + P (b−β = 0)], and the dashed curve is for 1

2 minβ [P (bβ =
1) + P (b−β = 1)]. The solid and dashed lines correspond, respectively, to the upper

and lower bounds of certainty in regions of validity of the FUR (5.7).

Bob that the prepared state ρAB is entangled. Bob does not trust Alice, but

he trusts that he receives a quantum system B. He is convinced only when the

correlation between his outcome b for the measurement chosen randomly from the

set B ∈ {β1, β2} and Alice’s outcome a for the measurement chosen randomly

from the set A ∈ {α1, α2} can not be explained by a local hidden state (LHS)

model, i.e., the joint probability P (aA, bB) can not be written as the following form

P (aA, bB) =
∑
λ

P (λ)P (aA |λ)PQ(bB |λ) , (5.8)

where P (λ) is a positive valued distribution over a set of hidden variables λ with∑
λ P (λ) = 1, and PQ denotes probability of an outcome obtained from a quantum

measurement. We assume here that Alice knows about Bob’s set of observables.

Now, from Eq. (5.8) it is easy to derive the relation

P (bB | aA) ≤ max
λ

[PQ(bB |λ) ] = PQ(bB |λmax) (5.9)
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using
∑

i xiyi ≤ maxi[xi]
∑

i yi ∀ {xi, yi} ≥ 0. Next, using
∑

i xiyi ≥ mini[xi]
∑

i yi

∀ {xi, yi} ≥ 0, we get

P (bB | aA) ≥ min
λ

[PQ(bB |λ) ] = PQ(bB |λmin) . (5.10)

Combining the relations (5.9) and (5.10), the sum of conditional probability dis-

tributions according to the LHS model is bounded by

min
β1,β2

[PQ(bβ1 |λmin) + PQ(bβ2 |λmin) ] ≤ P (bβ1 | aα1) + P (bβ2 | aα2)

≤ max
β1,β2

[PQ(bβ1 |λmax) + PQ(bβ2 |λmax) ].

(5.11)

In order to obtain the bounds of the algebraic inequality (5.11), we shall use the

new uncertainty relation, just formulated. The validity of the inequality (5.11) is

ensured by avoiding the region where both β → 0 and γ → 0, as shown in the

Fig. (5.1). In case of discrete-variable systems, using the uncertainty relation (5.3),

the inequality (5.11) is bounded by [ 1− 1√
2
, 1+ 1√

2
]. The bounds remains the same

for spin down outcome (“b = 1”) also. Hence, the shared state is steerable if the

value of 1
2

[P (bσz) +P (bσx) ] lies outside the above range [Pramanik, Kaplan, and

Majumdar, 2014], where Alice has prior knowledge of Bob’s measurement settings.

Now, using the FUR (5.7), the steering inequality (5.11) for continuous-variable

systems becomes

1

4
≤ 1

2
[P (bβ | aα1) + P (b−β | aα2) ] ≤ 3

4
. (5.12)

The violation of the inequality (5.12) indicates that the measurement correlations

are unable to be explained with the help of a LHS model, i.e., the given state is

steerable [Chowdhury, Pramanik, and Majumdar, 2015]. In the next section, we

shall provide an application of our derived steering inequality for NOON states.

5.6 Steerability of NOON states

NOON states [Lee, Kok, and Dowling, 2002] are regarded to be of high utility in

quantum metrology for making precise interferometric measurements. Such a state

is a maximally path-entangled two-mode number state of continuous variables,
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given by [Agarwal, 2013]

|N00N 〉 =
1√
2

( |N, 0 〉 − | 0, N 〉 ) , (5.13)

where N is the number of photons either in the first or the second mode. These

states have been experimentally realized up to N = 5 [Afek, Ambar, and Silber-

berg, 2010]. The entanglement of NOON states given in terms of their logarithmic

negativity is independent of the value of N , and Bell’s inequality is maximally

violated for all N [Wildfeuer, Lund, and Dowling, 2007]. However, they do not vi-

olate the entropic steering inequality for N ≥ 2 [Chowdhury et al., 2014]. Now, we

can check whether such states are steerable for N ≥ 2 using our derived steering

inequality.

Considering the cases for N even and odd separately, we find that for the former

the maximum violation of the inequality (5.12) on the upper side occurs when
1
2

[P (bβ | aα1) + P (b−β | aα2) ] = 1 for the choices of the parameters given by {b =

0, a = 0}, {b = 0, a = 1} . Similarly, the maximum violation on the lower side

occurs when 1
2

[P (bβ | aα1) + P (b−β | aα2) ] = 0 for the choices of the parameters

give by {b = 1, a = 0}, {b = 1, a = 1} . When N is odd, the maximum violations

on the upper side are 1 for the choices {b = 0, a = 1}, {b = 1, a = 0} , and on the

lower side they are 0 for the choices {b = 0, a = 0}, {b = 1, a = 1} .

In the Fig. (5.2), we have plotted the quantity 1
2

[P (bβ = 0 | aα = 1) + P (b−β =

0 | a−α = 1) ] versus β and α for N = 2, 4, and 6. One sees that the violation

of the steering inequality occurs maximally for N ≥ 2 in the region | β | → 0

[Chowdhury, Pramanik, and Majumdar, 2015]. The condition for the validity of

our FUR, viz. | γ | ≥ 1 when β → 0, is ensured since the average photon number

(N/2 here) is greater than 1.

5.7 Security of key generation

Steering finds direct applicability in demonstration of security of quantum key

distribution (QKD). The goal of any QKD protocol is to generate a key string be-

tween two distant parties, say, Alice and Bob such that it remains secret from an

eavesdropper, say, Charlie. In the first QKD protocol (BB84) proposed by Bennett

and Brassard [Bennett and Brassard, 1984], security is based on the uncertainty
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Figure 5.2: The variation of 1
2 [P (bβ = 0 | aα = 1) + P (b−β = 0 | a−α = 1)] with

respect to β and α for three different values of N . (i) The red colored curve corresponds
to the value N = 2; (ii) the green colored curve is for N = 4; (iii) and the blue colored

curve is for N = 6.

of the outcome of incompatible spin measurements chosen randomly along x- and

z-directions. The security of standard QKD protocols is based on certain ideal-

istic assumptions [Gisin et al., 2002; Scarani et al., 2009] that may be minimized

in the so-called device independent QKD (DIQKD) [Acin et al., 2007; Barrett,

Hardy, and Kent, 2005; Gisin, Pironio, and Sangouard, 2010; Masanes, Pironio,

and Acin, 2011; Mayers and Yao, 1998], where it is no longer required to fully

trust the devices used by Alice and Bob. However, practical and loophole free im-

plementations of DIQKD protocols are difficult since they require demonstration

of nonlocality. On the other hand, 1s-DIQKD [Branciard et al., 2012; Tomamichel

and Renner, 2011] protocols, which are intermediate between standard QKD and

DIQKD protocols, rely on demonstration of quantum steering for their security.

Continuous-variable 1s-DIQKD protocols have attracted attention in recent times

since they are reasonably robust to losses and practically more feasible compared

to their discrete-variable counterparts [Walk, Wiseman, and Ralph, 2014].
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5.7.1 Derivation of monogamy relation associated with the

new steering inequality

Monogamy of non-local correlations certifies the security of QKD [Barrett, Kent,

and Pironio, 2006; Barrett et al., 2005; Masanes, Acin, and Gisin, 2006]. To

develop a monogamy relation associated with the upper bound of our steering

inequality (5.12), let us consider that three parties Alice, Bob, and Charlie share

a tripartite state ρABC for which the inequality

1

2
( ΣBA + ΣBC ) ≤ 3

2
(5.14)

is satisfied, where ΣBA = P (bβ1 | aα1) + P (bβ2 | aα2) and ΣBC = P (bβ1 | cγ1) +

P (bβ2 | cγ2) , and c is Charlie’s outcome for the measurement chosen from the

set {γ1, γ2} . The proof comes from contradiction. Let 1
2

( ΣBA + ΣBC ) > 3
2
.

The above sum can be written as the sum of [P (bβ1 | aα1) + P (bβ2 | cγ2) ] and

[P (bβ1 | cγ1) +P (bβ2 | aα2) ]. As the average of the above two terms is greater than

3/2, one of the terms, say, the first, is greater than 3/2. Then, it is possible to find

a conditional Bob’s state for which [P (bβ1) + P (bβ2) ] > 3/2 , which contradicts

the FUR given by the inequality (5.7). Similarly, using the lower bound of our

steering inequality (5.12), one can obtain 1
2

( ΣBA + ΣBC ) ≥ 1
2

, which together

with the relation (5.14) gives

1

2
≤ 1

2
( ΣBA + ΣBC ) ≤ 3

2
. (5.15)

Here, the upper bound of the monogamy relation (3/2) [Chowdhury, Pramanik,

and Majumdar, 2015] is useful for calculation of the lower bound of the secret key

rate as will be shown in the next section.

5.7.2 Lower bound of the secret key rate

The monogamy relation (5.14) is used to bound the secret key rate in a 1s-DIQKD

protocol. The lower bound of the secret key rate under individual attack is given

by [Csiszàr and Körner, 1978]

r ≥ I(B : A)− I(B : C) , (5.16)
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where I is the mutual information. Suppose that the upper bound of the steering

inequality (5.12) is violated by an amount δ, i.e., 1
2

[P (bβ1 | aα1) +P (bβ2 | aα2) ] =
3
4

+ δ, where 0 < δ ≤ 1
4
. Then, the monogamy relation (5.14) implies that

1
2

[P (bβ1 | cγ1) + P (bβ2 | cγ2) ] ≤ 0.75 − δ. Hence, the lower bound of the key rate

becomes

r ≥ log2

[
0.75 + δ

0.75− δ

]
, (5.17)

where the logarithm of base 2 is taken since the secret key rate is expressed in

the units of bits per shared state. For the maximally entangled NOON states for

which δ = 1/4, the steering inequality (5.12) is maximally violated, making the

lower bound of the secret key rate unity [Chowdhury, Pramanik, and Majumdar,

2015]. One may note here that in comparison the lower bound for discrete variables

is 1/2 [Pramanik, Kaplan, and Majumdar, 2014]. Hence, the use of continuous-

variable systems in QKD offers more security in principle.

5.8 Summary

To summarize, in this chapter first we have derived a fine-grained uncertainty

relation (FUR) for continuous-variable systems with the help of an operational

interpretation of the Wigner function [Banaszek and Wodkiewicz, 1998, 1999]. The

FUR provides a manifestation of higher uncertainty in continuous-variable systems

than in discrete-variable systems. The increment of uncertainty in continuous-

variable systems restricts the amount of information leakage to the eavesdropper,

making them more secure in principle, than discrete-variable systems. Bob is

convinced of the prepared state being entangled only when the average of the

conditional probabilities is larger than 1/2 + 1/(2
√

2) [Pramanik, Kaplan, and

Majumdar, 2014] for discrete-variable systems, whereas, in continuous-variable

systems it is 3/4. Hence, our steering inequality is also stronger than that of

discrete-variable systems. Further, we have shown that our steering inequality is

capable of detecting maximal steerability by NOON states for N ≥ 2, thereby

circumventing a drawback of the entropic steering inequality which is not violated

by the NOON states for N ≥ 2 [Chowdhury et al., 2014].

With the help of the derived monogamy relation corresponding to our steering

inequality, we have bounded the key rate in the 1s-DIQKD protocol secured under
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individual attacks. The relation of the Wigner function with displaced parity op-

erators [Banaszek and Wodkiewicz, 1998, 1999] facilitates comparison of the key

rates in continuous and discrete variables. The lower bound of the secret key rate

is unity for the shared maximally entangled state of continuous variables, which is

double that for discrete variables [Pramanik, Kaplan, and Majumdar, 2014] even

when Alice knows Bob’s set of observables before preparation of the state. Know-

ing Bob’s set of observables does not help Alice to cheat here, whereas it is indeed

helpful in discrete-variable systems [Pramanik, Kaplan, and Majumdar, 2014].

The quasi-probability distributions contained in our steering inequality may be re-

constructed experimentally by homodyne detection techniques that are currently

realizable with high efficiency [Wakui et al., 2007]. Recent experiments [D’Angelo

et al., 2006; Jeong et al., 2003; Kuzmich, Walmsley, and Mandel, 2000] have indeed

confirmed Bell violation in continuous-variable systems using similar techniques.

It should thus be feasible to experimentally verify our steering inequality. Further

analysis of more general security attacks, as well as consideration of decoherence

effects would be needed to assess the practical viability of such key generation

protocols.



Chapter 6

Conclusions and future directions

The practical realization of non-Gaussian states are easier rather than that of per-

fect Gaussian states. These non-Gaussian states are more efficient in studying dif-

ferent quantum mechanical properties. In this thesis, nonlocality of non-Gaussian

states which is higher compared to the Gaussian states has been studied. In this

chapter, we have briefly summarized the important results obtained in this thesis

and discussed some possible future directions.

In the second chapter, we have examined the weak equivalence principle of grav-

ity at the quantum level. We have provided two ways of examination using a

non-Gaussian wave packet controlled by a tunable parameter. First, the posi-

tion detection probabilities of particles described by our tunable non-Gaussian

wave-packet projected upwards against gravity around the classical turning point

and also around the point of initial projection are calculated. These probabilities

exhibit mass dependence at both these points, thereby reflecting the quantum vi-

olation of the weak equivalence principle [Chowdhury et al., 2012]. Secondly, we

have calculated the mean arrival time of freely falling particles using the quantum

probability current, which also turns out to be mass dependent [Chowdhury et

al., 2012]. Such a mass dependence is shown to be enhanced by increasing the

non-Gaussianity parameter of the wave packet, thus signifying a stronger viola-

tion of the weak equivalence principle [Chowdhury et al., 2012] through a greater

departure from Gaussianity of the initial wave packet. The mass dependence of

both the position detection probabilities and the mean arrival time vanish in the

limit of large mass. Thus, compatibility between the weak equivalence principle

and quantum mechanics is recovered in the macroscopic limit of the latter. We

100
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have also exhibited a selection of Bohm trajectories to illustrate these features in

the free fall case using our non-Gaussian wave packet [Chowdhury et al., 2012].

It should be noted that the validity of this work is confined to non-relativistic

quantum mechanics. The use of our special kind of non-Gaussian wave packet can

facilitate the experimental verification of the violation of WEQ and can also ver-

ify the quantitative departure of the violation of WEQ from that obtained using

Gaussian nature of the wave packet.

In the third chapter, we have provided an example of non-locality in classical op-

tics. Here, we have considered optical beams with topological singularities which

possess Schmidt decomposition and shown that such classical beams share many

features of two mode entanglement in quantum optics. We have demonstrated

the coherence properties of such beams through the violations of Bell inequality

for continuous variables using the Wigner function. This violation is a conse-

quence of correlations between the (x, px) and (y, py) spaces which mathemati-

cally play the same role as nonlocality in quantum mechanics. The Bell viola-

tion for the Laguerre-Gaussian beams is shown to increase with higher orbital

angular momenta l of the vortex beam [Chowdhury, Majumdar, and Agarwal,

2013]. This increase is reminiscent of enhancement of nonlocality for many parti-

cle Greenberger-Horne-Zeilinger states or for higher spins. The states with large

l can be easily produced using spatial light modulators. The increase of nonlo-

cality is again proved by the corresponding increase of the quadrature correlation

function [Chowdhury, Majumdar, and Agarwal, 2013]. It is possible to experi-

mentally realize the predicted values of the correlation function as a function of

the beam parameters. As two-point correlation functions are used in our Bell’s

inequality, shear Sagnac interferometry [Iaconis and Walmsley, 1996; Singh et al.,

2006; Zhang and Mukamel, 2007] may be used to verify experimentally our pre-

dicted Bell violation and its enhancement for vortex beams with higher angular

momentum.

Non-Gaussian states have correlations higher than second order and to detect

that correlation, one needs some detection criterion that contains higher order

terms. As an example of this and in view of the increasing importance of non-

Gaussian entangled states in quantum information protocols like teleportation and

violations of Bell’s inequalities, the steering of continuous-variable non-Gaussian

entangled states is investigated in the fourth chapter. The EPR steering for Gaus-

sian states may be demonstrated through the violation of the Reid inequality
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[Einstein, Podolsky, and Rosen, 1935] involving products of the inferred variances

of non-commuting observables. However, for arbitrary states the Reid inequal-

ity is not always sufficient because of the higher order correlations in such states

[Chowdhury et al., 2014]. One then needs to use the entropic steering inequality

[Walborn et al., 2011]. We have examined several classes of currently important

non-Gaussian entangled states, such as the two-dimensional harmonic oscillator,

the photon subtracted two mode squeezed vacuum, and the NOON states, with

the motivation to investigate EPR-steering of such states [Chowdhury et al., 2014].

This should stimulate steering experiments using non-Gaussian states. We have

presented a comparative study of the violation of the Bell-inequality and steering

strength for these states. Both the Bell violation and steering strength increase

with the angular momentum of LG modes. For both the two-mode squeezed vac-

uum state and the single-photon-subtracted two-mode squeezed vacuum state, we

have shown that steering strength can detect better the inherent entanglement

than Bell violation. NOON states are steerable for N = 1 only using the en-

tropic steering relation, whereas the entanglement of such states is same for all

N . This again shows that entanglement, steering, and Bell nonlocal correlations

are different from each other [Chowdhury et al., 2014]. The above results should

be useful for detecting and manipulating correlations in non-Gaussian states for

practical purposes in different arenas such as information processing, quantum

metrology, and Bose condensates. Further work on the issue of the recently pro-

posed symmetric steering framework [Schneeloch et al., 2013] may be of interest

using non-Gaussian resources.

In the fifth chapter, we have described how a stronger uncertainty relation will pro-

vide a correspondingly stronger steering inequality. Here, we have derived a fine-

grained uncertainty relation for the measurement of two incompatible observables

on a single quantum system of continuous variables using the operational defini-

tion of Wigner function, and have shown that continuous-variable systems are more

uncertain than discrete-variable systems [Chowdhury, Pramanik, and Majumdar,

2015]. Using the derived fine-grained uncertainty relation, we have formulated a

new steering criterion for continuous-variable systems and have given an applica-

tion of this for NOON states. Entropic steering criterion is able to demonstrate

steerability of NOON states for N = 1 only [Chowdhury et al., 2014]. But using

our derived steering criterion, we are able to reveal the steerability of NOON states

for all N > 1 that has hitherto not been possible using other criteria [Chowdhury,

Pramanik, and Majumdar, 2015]. Therefore, our fine-grained steering criterion is
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stronger than previously existing ones. We further obtain a monogamy relation

for our steering inequality which leads to an, in principle, improved lower bound

on the secret key rate of a one-sided device independent quantum key distribu-

tion protocol for continuous variables under individual attacks. By considering

Alice’s knowledge about Bob’s set of observables, we have calculated the lower

bound of the secret key rate as unity [Chowdhury, Pramanik, and Majumdar,

2015] for the shared maximally entangled state of continuous variables, whereas

the lower bound is just half for discrete variables. We have used the Wigner func-

tion as quasiprobability distribution, which can be experimentally reconstructed

by homodyne detection techniques that are currently realizable with high effi-

ciency [Wakui et al., 2007]. Recently, experimental Bell violation is also confirmed

[D’Angelo et al., 2006; Jeong et al., 2003; Kuzmich, Walmsley, and Mandel, 2000]

using similar techniques for continuous-variable systems. Therefore, this should

facilitate the experimental verification of our steering criterion. Further analysis

of more general security attacks, as well as consideration of decoherence effects

would be needed to assess the practical viability of such key generation protocols.
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